Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ionic leakage underlies a gain-of-function effect of dominant disease mutations affecting diverse P-type ATPases

Abstract

Type II P-type ATPases (PAIIs) constitute a family of conserved proteins that actively generate ionic gradients across membranes. Mutations in genes encoding PAIIs can cause heritable dominant diseases, with suggested etiology of haploinsufficiency. Using a Drosophila melanogaster genetic screen, we identified a dominant mutation altering the PAII member sarcoendoplasmic reticulum Ca2+ ATPase (SERCA). This mutation conferred temperature-sensitive uncoordination in a gain-of-function manner. We established that this gain-of-function phenotype is linked to dominant disease-causing mutations affecting various human PAIIs. We further found that heterologous expression of mutant PAIIs elicited ion leakage that was exacerbated at elevated temperatures. Therefore, these dominant mutations result in ionic leakage and render PAIIs susceptible to deleterious effects from elevated temperatures. Accordingly, it was recently reported that missense mutations affecting the Na+/K+ ATPase can elicit ionic leakage. We propose that ionic leakage is a pervasive gain-of-function mechanism that can underlie a variety of dominant PAII-related diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino acids altered in dominant PAII-related diseases in humans and alteration in Uncts2 mutant Drosophila.
Figure 2: Effects of dSERCA dominant alterations and elevated temperature on Ca2+ levels in intracellular stores.
Figure 3: Effects of mSERCA2 dominant alterations and elevated temperature on Ca2+ levels in intracellular stores.
Figure 4: Disease-causing alterations in the N and A domains elicit ionic leakage.
Figure 5: Dominant alterations in rPMCA2 elicit ionic leakage.
Figure 6: Effects of PMCA inhibition by increasing the pH to 9.0.

Similar content being viewed by others

References

  1. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).

    PubMed  Google Scholar 

  2. Palmgren, M.G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).

    CAS  PubMed  Google Scholar 

  3. Toyoshima, C., Nakasako, M., Nomura, H. & Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655 (2000).

    CAS  PubMed  Google Scholar 

  4. Toyoshima, C., Kanai, R. & Cornelius, F. First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Structure 19, 1732–1738 (2011).

    CAS  PubMed  Google Scholar 

  5. Bublitz, M., Poulsen, H., Morth, J.P. & Nissen, P. In and out of the cation pumps: P-type ATPase structure revisited. Curr. Opin. Struct. Biol. 20, 431–439 (2010).

    CAS  PubMed  Google Scholar 

  6. Szigeti, R. & Kellermayer, R. Autosomal-dominant calcium ATPase disorders. J. Invest. Dermatol. 126, 2370–2376 (2006).

    CAS  PubMed  Google Scholar 

  7. Brini, M. & Carafoli, E. Calcium pumps in health and disease. Physiol. Rev. 89, 1341–1378 (2009).

    CAS  PubMed  Google Scholar 

  8. de Vries, B., Frants, R.R., Ferrari, M.D. & van den Maagdenberg, A.M. Molecular genetics of migraine. Hum. Genet. 126, 115–132 (2009).

    PubMed  Google Scholar 

  9. de Carvalho Aguiar, P. et al. Mutations in the Na+/K+-ATPase α3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 43, 169–175 (2004).

    PubMed  Google Scholar 

  10. Heinzen, E.L. et al. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat. Genet. 44, 1030–1034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brashear, A., Sweadner, K. & Ozelius, L. in GeneReviews (eds. Pagon, R.A., Bird, T.D., Dolan, C.R., Stephens, K. & Adam, M.P.) (University of Washington, Seattle, 1993).

  12. De Fusco, M. et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33, 192–196 (2003).

    CAS  PubMed  Google Scholar 

  13. Lingrel, J.B., Williams, M.T., Vorhees, C.V. & Moseley, A.E. Na,K-ATPase and the role of α isoforms in behavior. J. Bioenerg. Biomembr. 39, 385–389 (2007).

    CAS  PubMed  Google Scholar 

  14. Moseley, A.E. et al. Deficiency in Na,K-ATPase α isoform genes alters spatial learning, motor activity, and anxiety in mice. J. Neurosci. 27, 616–626 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Okunade, G.W. et al. Loss of the Atp2c1 secretory pathway Ca2+-ATPase (SPCA1) in mice causes Golgi stress, apoptosis, and midgestational death in homozygous embryos and squamous cell tumors in adult heterozygotes. J. Biol. Chem. 282, 26517–26527 (2007).

    CAS  PubMed  Google Scholar 

  16. Shull, G.E. et al. Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann. NY Acad. Sci. 986, 453–460 (2003).

    CAS  PubMed  Google Scholar 

  17. Beuschlein, F. et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat. Genet. 45, 440–444 (2013).

    CAS  PubMed  Google Scholar 

  18. Azizan, E.A. et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat. Genet. 45, 1055–1060 (2013).

    CAS  PubMed  Google Scholar 

  19. Cook, B., Hardy, R.W., McConnaughey, W.B. & Zuker, C.S. Preserving cell shape under environmental stress. Nature 452, 361–364 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Koundakjian, E.J., Cowan, D.M., Hardy, R.W. & Becker, A.H. The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167, 203–206 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanyal, S. et al. Analysis of conditional paralytic mutants in Drosophila sarco-endoplasmic reticulum calcium ATPase reveals novel mechanisms for regulating membrane excitability. Genetics 169, 737–750 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Riant, F. et al. ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum. Mutat. 26, 281 (2005).

    PubMed  Google Scholar 

  23. Podestà, B., Briatore, E., Boghi, A., Marenco, D. & Calzolari, S. Transient nonverbal learning disorder in a child suffering from Familial Hemiplegic Migraine. Cephalalgia 31, 1497–1502 (2011).

    PubMed  Google Scholar 

  24. Jen, J.C. et al. Prolonged hemiplegic episodes in children due to mutations in ATP1A2. J. Neurol. Neurosurg. Psychiatry 78, 523–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Godic, A., Korosec, B., Miljkovic, J., Kansky, A. & Glavac, D. Four novel ATP2A2 mutations in Slovenian patients with Darier disease. J. Am. Acad. Dermatol. 62, 819–823 (2010).

    CAS  PubMed  Google Scholar 

  26. Ikeda, S. et al. Mutations in ATP2A2 in patients with Darier's disease. J. Invest. Dermatol. 121, 475–477 (2003).

    CAS  PubMed  Google Scholar 

  27. Green, E.K. et al. Novel ATP2A2 mutations in a large sample of individuals with Darier disease. J. Dermatol. 40, 259–266 (2013).

    CAS  PubMed  Google Scholar 

  28. Jurkat-Rott, K. et al. Variability of familial hemiplegic migraine with novel A1A2 Na+/K+-ATPase variants. Neurology 62, 1857–1861 (2004).

    CAS  PubMed  Google Scholar 

  29. Thomsen, L.L. et al. The genetic spectrum of a population-based sample of familial hemiplegic migraine. Brain 130, 346–356 (2007).

    CAS  PubMed  Google Scholar 

  30. Brashear, A. et al. ATP1A3 mutations in infants: a new rapid-onset dystonia-Parkinsonism phenotype characterized by motor delay and ataxia. Dev. Med. Child Neurol. 54, 1065–1067 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Chao, S.C., Yang, M.H. & Lee, J.Y. Mutation analysis of the ATP2A2 gene in Taiwanese patients with Darier's disease. Br. J. Dermatol. 146, 958–963 (2002).

    CAS  PubMed  Google Scholar 

  32. Fu, X., Liu, H., Yan, X., Yu, Y. & Zhang, F. Mutation analysis of the ATP2A2 gene in Chinese patients with Darier's disease. J. Eur. Acad. Dermatol. Venereol. 25, 370–371 (2011).

    CAS  PubMed  Google Scholar 

  33. Ren, Y.Q. et al. Five mutations of ATP2A2 gene in Chinese patients with Darier's disease and a literature review of 86 cases reported in China. Arch. Dermatol. Res. 298, 58–63 (2006).

    CAS  PubMed  Google Scholar 

  34. Ringpfeil, F. et al. Darier disease—novel mutations in ATP2A2 and genotype-phenotype correlation. Exp. Dermatol. 10, 19–27 (2001).

    CAS  PubMed  Google Scholar 

  35. Sakuntabhai, A., Burge, S., Monk, S. & Hovnanian, A. Spectrum of novel ATP2A2 mutations in patients with Darier's disease. Hum. Mol. Genet. 8, 1611–1619 (1999).

    CAS  PubMed  Google Scholar 

  36. Onozuka, T., Sawamura, D., Yokota, K. & Shimizu, H. Mutational analysis of the ATP2A2 gene in two Darier disease families with intrafamilial variability. Br. J. Dermatol. 150, 652–657 (2004).

    CAS  PubMed  Google Scholar 

  37. Wang, P.G. et al. Genetic heterogeneity in acrokeratosis verruciformis of Hopf. Clin. Exp. Dermatol. 31, 558–563 (2006).

    PubMed  Google Scholar 

  38. Gadsby, D.C. Ion channels versus ion pumps: the principal difference, in principle. Nat. Rev. Mol. Cell Biol. 10, 344–352 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruiz-Perez, V.L. et al. ATP2A2 mutations in Darier's disease: variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatric features are independent of mutation class. Hum. Mol. Genet. 8, 1621–1630 (1999).

    CAS  PubMed  Google Scholar 

  40. Sakuntabhai, A. et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat. Genet. 21, 271–277 (1999).

    CAS  PubMed  Google Scholar 

  41. Ahn, W., Lee, M.G., Kim, K.H. & Muallem, S. Multiple effects of SERCA2b mutations associated with Darier's disease. J. Biol. Chem. 278, 20795–20801 (2003).

    CAS  PubMed  Google Scholar 

  42. Duman, J.G., Chen, L. & Hille, B. Calcium transport mechanisms of PC12 cells. J. Gen. Physiol. 131, 307–323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Dode, L. et al. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 2 isoforms and characterization of Darier disease (SERCA2) mutants by steady-state and transient kinetic analyses. J. Biol. Chem. 278, 47877–47889 (2003).

    CAS  PubMed  Google Scholar 

  44. Miyauchi, Y. et al. Comprehensive analysis of expression and function of 51 sarco(endo)plasmic reticulum Ca2+-ATPase mutants associated with Darier disease. J. Biol. Chem. 281, 22882–22895 (2006).

    CAS  PubMed  Google Scholar 

  45. Tavraz, N.N. et al. Diverse functional consequences of mutations in the Na+/K+-ATPase α2-subunit causing familial hemiplegic migraine type 2. J. Biol. Chem. 283, 31097–31106 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Isken, O. & Maquat, L.E. The multiple lives of NMD factors: balancing roles in gene and genome regulation. Nat. Rev. Genet. 9, 699–712 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Leo, L. et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 7, e1002129 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Clapcote, S.J. et al. Mutation I810N in the α3 isoform of Na+,K+-ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. Proc. Natl. Acad. Sci. USA 106, 14085–14090 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. DeAndrade, M.P., Yokoi, F., van Groen, T., Lingrel, J.B. & Li, Y. Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism. Behav. Brain Res. 216, 659–665 (2011).

    CAS  PubMed  Google Scholar 

  50. Kirshenbaum, G.S. et al. Alternating hemiplegia of childhood–related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice. PLoS ONE 8, e60141 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ishii, A. et al. Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS ONE 8, e56120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rosewich, H. et al. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol. 11, 764–773 (2012).

    CAS  PubMed  Google Scholar 

  53. Artigas, P. & Gadsby, D.C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl. Acad. Sci. USA 100, 501–505 (2003).

    CAS  PubMed  Google Scholar 

  54. Yaragatupalli, S., Olivera, J.F., Gatto, C. & Artigas, P. Altered Na+ transport after an intracellular α-subunit deletion reveals strict external sequential release of Na+ from the Na/K pump. Proc. Natl. Acad. Sci. USA 106, 15507–15512 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Meier, S., Tavraz, N.N., Durr, K.L. & Friedrich, T. Hyperpolarization-activated inward leakage currents caused by deletion or mutation of carboxy-terminal tyrosines of the Na+/K+-ATPase α subunit. J. Gen. Physiol. 135, 115–134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nussinov, R. & Tsai, C.J. Allostery in disease and in drug discovery. Cell 153, 293–305 (2013).

    CAS  PubMed  Google Scholar 

  57. Cahalan, M.D. STIMulating store-operated Ca2+ entry. Nat. Cell Biol. 11, 669–677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hill, J.K. et al. Splice-site A choice targets plasma-membrane Ca2+-ATPase isoform 2 to hair bundles. J. Neurosci. 26, 6172–6180 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Gillespie (Oregon Health and Science University), T. Avidor-Reiss (University of Toledo), A. Kiger (University of California, San Diego), S. Courtneidge (Sanford-Burnham Medical Research Institute) and L. Luo (Stanford University) for reagents used in this work. We thank K. Spencer for technical assistance and A. Chadha for comments on the manuscript. The Uncts2 mutant was identified by screening a collection of F3 Drosophila lines in the laboratory of C. Zuker.

Author information

Authors and Affiliations

Authors

Contributions

B.C. performed mutagenesis screening and mapped the revertant lines. B.S.D. cloned and sequenced the dSERCA gene from the Uncts2 mutant. M.K. generated and tested all transgenic lines, sequenced dSERCA from additional temperature-sensitive uncoordinated mutants and performed the calcium-imaging experiments in cultured cells. B.C. led the entire project. M.K. generated tables and figures. M.K. and B.C. wrote the manuscript. All authors participated in the discussion and interpretation of data and results, and all participated in the editing and revision of the manuscript.

Corresponding author

Correspondence to Boaz Cook.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2, and Supplementary Figures 1–4 (PDF 1324 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, M., Desai, B. & Cook, B. Ionic leakage underlies a gain-of-function effect of dominant disease mutations affecting diverse P-type ATPases. Nat Genet 46, 144–151 (2014). https://doi.org/10.1038/ng.2850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing