Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC1,2. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter3 that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B4,5. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Primary accessions

Gene Expression Omnibus

Sequence Read Archive


  1. 1.

    et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16, 533–546 (2009).

  2. 2.

    et al. Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol. 117, 457–464 (2009).

  3. 3.

    , , & The human DNA methyltransferases DNMT3A and DNMT3B have two types of promoters with different CpG contents. Biochim. Biophys. Acta 1577, 457–465 (2002).

  4. 4.

    et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol. 15, 268–279 (2008).

  5. 5.

    et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15, 259–267 (2008).

  6. 6.

    et al. Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol. 120, 253–260 (2010).

  7. 7.

    et al. Embryonal tumors with abundant neuropil and true rosettes: a distinctive CNS primitive neuroectodermal tumor. Am. J. Surg. Pathol. 33, 211–217 (2009).

  8. 8.

    et al. LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol. 124, 875–881 (2012).

  9. 9.

    et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol. 13, 838–848 (2012).

  10. 10.

    et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770 (2005).

  11. 11.

    & A novel human Cl channel family related to Drosophila flightless locus. J. Biol. Chem. 279, 22461–22468 (2004).

  12. 12.

    et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res. 41, D56–D63 (2013).

  13. 13.

    et al. Identification and correction of systematic error in high-throughput sequence data. BMC Bioinformatics 12, 451 (2011).

  14. 14.

    et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

  15. 15.

    et al. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function. Hum. Mol. Genet. 17, 690–709 (2008).

  16. 16.

    , & Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 142, 727–737 (2006).

  17. 17.

    et al. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PLoS ONE 7, e51527 (2012).

  18. 18.

    , , & DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

  19. 19.

    et al. An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo. Mol. Syst. Biol. 9, 632 (2013).

  20. 20.

    , , , & Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 97, 51–61 (2013).

  21. 21.

    et al. The microRNA cluster C19MC is deregulated in parathyroid tumours. J. Mol. Endocrinol. 49, 115–124 (2012).

  22. 22.

    & The dark side of a success story: microRNAs of the C19MC cluster in human tumours. J. Pathol. 227, 270–274 (2012).

  23. 23.

    et al. In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J. Pathol. 227, 275–285 (2012).

  24. 24.

    et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416, 552–556 (2002).

  25. 25.

    et al. De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2′-deoxycytidine. Oncogene 24, 3091–3099 (2005).

  26. 26.

    et al. Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26, 5553–5563 (2007).

  27. 27.

    & Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20 (2012).

  28. 28.

    , , , & Role of DNMT3B in the regulation of early neural and neural crest specifiers. Epigenetics 7, 71–82 (2012).

  29. 29.

    et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

  30. 30.

    & FishingCNV: a graphical software package for detecting rare copy number variations in exome-sequencing data. Bioinformatics 29, 1461–1462 (2013).

  31. 31.

    , , & Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5, 557–572 (2004).

  32. 32.

    et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40, W622–W627 (2012).

  33. 33.

    , & TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

  34. 34.

    , , & Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  35. 35.

    , & Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).

  36. 36.

    et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  37. 37.

    & BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  38. 38.

    et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

  39. 39.

    BLAT—the BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).

  40. 40.

    et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).

  41. 41.

    1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  42. 42.

    , & Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

  43. 43.

    , & SWAN: subset-quantile within array normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 13, R44 (2012).

Download references


This work was supported by the Cancer Research Society and was funded in part by Hungarian Scientific Research Fund (OTKA) contract T-04639, by National Research and Development Fund (NKFP) contracts 1A/002/2004 (P.H., M. Garami and L.B.) and TÁMOP-4.2.2A-11/1/KONV-2012-0025 (A.K. and L.B.), and by Canadian Institutes of Health Research grant 102684 (A.H.). N.J. is a member of the Penny Cole laboratory and is the recipient of a Chercheur Clinicien Senior Award. S.B. is supported by an RMGA (Reseau Médical de Génétique Apliquée; Network of Applied Genetic Medicine) fellowship. T.P. and J.M. hold Canada Research Chairs (tier 2). C.L.K. is the recipient of a fellowship award from the Fonds de Recherche du Québec-Santé, N.G. is the recipient of a studentship award from Cedars, and A.M.F. is the recipient of a studentship from the Canadian Institutes of Health Research and the McGill–Canadian Institutes of Health Research Training Program in Systems Biology. R.S. is supported by the Canadian Institutes of Health Research.

Author information

Author notes

    • Claudia L Kleinman
    •  & Noha Gerges

    These authors contributed equally to this work.

    • Annie Huang
    • , Jacek Majewski
    •  & Nada Jabado

    These authors jointly directed this work.


  1. McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada.

    • Claudia L Kleinman
    • , Simon Papillon-Cavanagh
    • , Albena Pramatarova
    • , Véronique Adoue
    • , Stephan Busche
    • , Maxime Caron
    • , Haig Djambazian
    • , Amandine Bemmo
    • , Jeremy Schwartzentruber
    • , Alfredo Staffa
    • , Alexandre Montpetit
    • , Pierre Berube
    • , Robert Sladek
    • , Tomi Pastinen
    •  & Jacek Majewski
  2. Department of Human Genetics, McGill University, Montreal, Quebec, Canada.

    • Claudia L Kleinman
    • , Noha Gerges
    • , Dong-Anh Khuong Quang
    • , Robert Sladek
    • , Jacek Majewski
    •  & Nada Jabado
  3. Division of Hematology-Oncology, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.

    • Patrick Sin-Chan
    • , Tara Spence
    •  & Annie Huang
  4. Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.

    • Adam M Fontebasso
    •  & Nada Jabado
  5. Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada.

    • Steffen Albrecht
  6. Second Department of Paediatrics, Semmelweis University, Budapest, Hungary.

    • Peter Hauser
    •  & Miklos Garami
  7. Department of Neurosurgery, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.

    • Almos Klekner
    •  & Laszlo Bognar
  8. Division of Neurosurgery, Department of Surgery, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada.

    • Jose-Luis Montes
  9. Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland.

    • Magdalena Zakrzewska
    •  & Pawel P Liberski
  10. Department of Neurosurgery, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland.

    • Krzysztof Zakrzewski
  11. Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada.

    • Zhifeng Dong
    •  & Peter M Siegel
  12. Department of Biochemistry, McGill University, Montreal, Quebec, Canada.

    • Thomas Duchaine
  13. Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada.

    • Christian Perotti
    •  & Jennifer A Chan
  14. Division of Pediatric Hematology-Oncology, Department of Pediatrics, McGill University and the McGill University Health Centre Research Institute, Montreal, Quebec, Canada.

    • Adam Fleming
    •  & Damien Faury
  15. Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.

    • Marc Remke
    • , Marco Gallo
    • , Peter Dirks
    •  & Michael D Taylor
  16. Program in Cell Biology, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.

    • Annie Huang


  1. Search for Claudia L Kleinman in:

  2. Search for Noha Gerges in:

  3. Search for Simon Papillon-Cavanagh in:

  4. Search for Patrick Sin-Chan in:

  5. Search for Albena Pramatarova in:

  6. Search for Dong-Anh Khuong Quang in:

  7. Search for Véronique Adoue in:

  8. Search for Stephan Busche in:

  9. Search for Maxime Caron in:

  10. Search for Haig Djambazian in:

  11. Search for Amandine Bemmo in:

  12. Search for Adam M Fontebasso in:

  13. Search for Tara Spence in:

  14. Search for Jeremy Schwartzentruber in:

  15. Search for Steffen Albrecht in:

  16. Search for Peter Hauser in:

  17. Search for Miklos Garami in:

  18. Search for Almos Klekner in:

  19. Search for Laszlo Bognar in:

  20. Search for Jose-Luis Montes in:

  21. Search for Alfredo Staffa in:

  22. Search for Alexandre Montpetit in:

  23. Search for Pierre Berube in:

  24. Search for Magdalena Zakrzewska in:

  25. Search for Krzysztof Zakrzewski in:

  26. Search for Pawel P Liberski in:

  27. Search for Zhifeng Dong in:

  28. Search for Peter M Siegel in:

  29. Search for Thomas Duchaine in:

  30. Search for Christian Perotti in:

  31. Search for Adam Fleming in:

  32. Search for Damien Faury in:

  33. Search for Marc Remke in:

  34. Search for Marco Gallo in:

  35. Search for Peter Dirks in:

  36. Search for Michael D Taylor in:

  37. Search for Robert Sladek in:

  38. Search for Tomi Pastinen in:

  39. Search for Jennifer A Chan in:

  40. Search for Annie Huang in:

  41. Search for Jacek Majewski in:

  42. Search for Nada Jabado in:


N.G., D.-A.K.Q., A.P., P.S.-C., V.A., S.B., A.M.F., Z.D., C.P., T.S., D.F. and P.M.S. performed experimental work. C.L.K., M.C., H.D., S.B., S.P.-C., A.B., A.M. and J.S. performed bioinformatic analyses. C.L.K., N.G., Z.D., A.H., P.S.-C., T.D., S.P.-C., T.P., S.B., V.A., A.S., P.B., R.S., J.M. and N.J. performed data analyses and generated the text and figures. C.L.K., S.P.-C., P.H., A.K., M. Garami, M.Z., M.R., M. Gallo, P.D., M.D.T., P.P.L., L.B., J.-L.M., J.A.C., K.Z., S.A., A.F. and N.J. collected data and provided patient materials. J.M. and N.J. provided leadership for the project. All authors contributed to the final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Annie Huang or Jacek Majewski or Nada Jabado.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–16 and Supplementary Tables 1–7

Excel files

  1. 1.

    Supplementary Table 8

    Differential expression analysis for all UCSC genes expressed above a minimum cutoff level

About this article

Publication history






Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing