Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars

Abstract

We report the sequencing at 131× coverage, de novo assembly and analyses of the genome of a female Tibetan wild boar. We also resequenced the whole genomes of 30 Tibetan wild boars from six major distributed locations and 18 geographically related pigs in China. We characterized genetic diversity, population structure and patterns of evolution. We searched for genomic regions under selection, which includes genes that are involved in hypoxia, olfaction, energy metabolism and drug response. Comparing the genome of Tibetan wild boar with those of neighboring Chinese domestic pigs further showed the impact of thousands of years of artificial selection and different signatures of selection in wild boar and domestic pig. We also report genetic adaptations in Tibetan wild boar that are associated with high altitudes and characterize the genetic basis of increased salivation in domestic pig.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expansion and contraction of gene families in pig genomes.
Figure 2: Population genetics and demographic history.
Figure 3: Genomic regions with strong selective sweep signals in Tibetan wild boars and Chinese domestic pigs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

NCBI Reference Sequence

Sequence Read Archive

Referenced accessions

Ensembl

References

  1. Groenen, M.A. et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larson, G. et al. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Qiu, Q. et al. The yak genome and adaptation to life at high altitude. Nat. Genet. 44, 946–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

  5. Näsvall, J., Sun, L., Roth, J.R. & Andersson, D.I. Real-time evolution of new genes by innovation, amplification, and divergence. Science 338, 384–387 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pham, C.G. et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119, 529–542 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kuehn, M., Welsch, H., Zahnert, T. & Hummel, T. Changes of pressure and humidity affect olfactory function. Eur. Arch. Otorhinolaryngol. 265, 299–302 (2008).

    Article  PubMed  Google Scholar 

  8. Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen, D.T. et al. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics 13, 584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marchese, S., Pes, D., Scaloni, A., Carbone, V. & Pelosi, P. Lipocalins of boar salivary glands binding odours and pheromones. Eur. J. Biochem. 252, 563–568 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Mak, G.K. et al. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nat. Neurosci. 10, 1003–1011 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Jacob, S., McClintock, M.K., Zelano, B. & Ober, C. Paternally inherited HLA alleles are associated with women's choice of male odor. Nat. Genet. 30, 175–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Sabeti, P.C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  15. Wouters, B.G. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat. Rev. Cancer 8, 851–864 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Rosenberger, P. et al. Hypoxia-inducible factor–dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat. Immunol. 10, 195–202 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Humbert, M., Sitbon, O. & Simonneau, G. Treatment of pulmonary arterial hypertension. N. Engl. J. Med. 351, 1425–1436 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, B.J. et al. A possible role for systemic hypoxia in the reactive component of pulmonary hypertension in heart failure. J. Card. Fail. 19, 50–59 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Owens, G.K., Kumar, M.S. & Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767–801 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Moore, L.G., Zamudio, S., Zhuang, J., Sun, S. & Droma, T. Oxygen transport in Tibetan women during pregnancy at 3,658 m. Am. J. Phys. Anthropol. 114, 42–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Beall, C.M., Song, K., Elston, R.C. & Goldstein, M.C. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc. Natl. Acad. Sci. USA 101, 14300–14304 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palomera-Sanchez, Z. & Zurita, M. Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. DNA Repair (Amst.) 10, 119–125 (2011).

    Article  CAS  Google Scholar 

  24. Hynes, R.O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, K., Baxter, T., Muir, W.M., Groenen, M.A. & Schook, L.B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int. J. Biol. Sci. 3, 153–165 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu, L. et al. Distinct expression patterns of genes associated with muscle growth and adipose deposition in Tibetan pigs: a possible adaptive mechanism for high altitude conditions. High Alt. Med. Biol. 10, 45–55 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Myers, M.G. Jr. & Olson, D.P. Central nervous system control of metabolism. Nature 491, 357–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Gerstein, H.C. & Waltman, L. Why don't pigs get diabetes? Explanations for variations in diabetes susceptibility in human populations living in a diabetogenic environment. CMAJ 174, 25–26 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meyer, U.A., Zanger, U.M. & Schwab, M. Omics and drug response. Annu. Rev. Pharmacol. Toxicol. 53, 475–502 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Rubin, C.J. et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 109, 19529–19536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bosse, M. et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genet. 8, e1003100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng, B., Xu, Q. & Shen, Y. The relationship between climate change and quaternary glacial cycles on the Qinghai-Tibetan plateau: review and speculation. Quat. Int. 97, 93–101 (2002).

    Article  Google Scholar 

  33. Chen, J.M., Liu, F., Wang, Q.F. & Motley, T.J. Phylogeography of a marsh herb Sagittaria trifolia (Alismataceae) in China inferred from cpDNA atpB-rbcL intergenic spacers. Mol. Phylogenet. Evol. 48, 168–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Y., Yan, H.F. & Ge, X.J. Phylogeographic analysis and environmental niche modeling of widespread shrub Rhododendron simsii in China reveals multiple glacial refugia during the last glacial maximum. J. Syst. Evol. 50, 362–373 (2012).

    Article  Google Scholar 

  35. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Storz, J.F. & Moriyama, H. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt. Med. Biol. 9, 148–157 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rubin, C.J. et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–591 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Amaral, A.J. et al. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS ONE 6, e14782 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Axelsson, E. et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495, 360–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Romanenko, V., Nakamoto, T., Srivastava, A., Melvin, J.E. & Begenisich, T. Molecular identification and physiological roles of parotid acinar cell maxi-K channels. J. Biol. Chem. 281, 27964–27972 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, X. et al. Attenuation of store-operated Ca2+ current impairs salivary gland fluid secretion in TRPC1−/− mice. Proc. Natl. Acad. Sci. USA 104, 17542–17547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Isogai, Y. et al. Molecular organization of vomeronasal chemoreception. Nature 478, 241–245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haga, S. et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466, 118–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kanis, E., Van den Belt, H., Groen, A., Schakel, J. & De Greef, K. Breeding for improved welfare in pigs: a conceptual framework and its use in practice. Anim. Sci. 78, 315–330 (2004).

    Article  Google Scholar 

  45. Whittaker, X., Edwards, S., Spoolder, H., Lawrence, A. & Corning, S. Effects of straw bedding and high fibre diets on the behaviour of floor fed group-housed sows. Appl. Anim. Behav. Sci. 63, 25–39 (1999).

    Article  Google Scholar 

  46. Ramonet, Y. et al. The effect of dietary fibre on energy utilisation and partitioning of heat production over pregnancy in sows. Br. J. Nutr. 84, 85–94 (2000).

    CAS  PubMed  Google Scholar 

  47. Ramonet, Y., Meunier-Salaun, M.C. & Dourmad, J.Y. High-fiber diets in pregnant sows: digestive utilization and effects on the behavior of the animals. J. Anim. Sci. 77, 591–599 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Li, R. et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  52. De Bie, T., Cristianini, N., Demuth, J.P. & Hahn, M.W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Tang, H., Peng, J., Wang, P. & Risch, N.J. Estimation of individual admixture: analytical and study design considerations. Genet. Epidemiol. 28, 289–301 (2005).

    Article  PubMed  Google Scholar 

  55. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed  PubMed Central  Google Scholar 

  56. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Guan, Y. Liu, Y. Xie, H. Wang and L. Bai for help in preparing the pig tissues. We thank Q. Quan, F. Wang, Y. Tan, Y. Guo and G. Yu for the optimizing chart. We thank S. Zhao and L. Huang for critical review of the manuscript. This work was supported by grants from the National Special Foundation for Transgenic Species of China (2014ZX0800950B, 2009ZX08009-155B and 2011ZX08006-003), the Foundation for Discipline Construction of Sichuan Agricultural University, the Specialized Research Fund of Ministry of Agriculture of China (NYCYTX-009), the Project of Provincial Twelfth Five Years' Animal Breeding of Sichuan Province (2011YZGG15), the National High Technology Research and Development Program of China (863 Program) (2013AA102502), the Postdoctoral Fellowship of Peking-Tsinghua Center for Life Sciences and the China Postdoctoral Science Foundation (2012M520123) to X.L. and M.L., the Chongqing Fund for Distinguished Young Scientists (CSTC2010BA1007) to J.W. and the Fund of Peking University to the Biodynamic Optical Imaging Center (BIOPIC), the Fund of Peking-Tsinghua Center for Life Sciences and the Fund of National Basic Research Program of China (2011CB809201) to R.L.

Author information

Authors and Affiliations

Authors

Contributions

M.L., S.T., R.L. and X.L. led the experiments and designed the analytical strategy. M.L., L.J., T.W., J.W., Y. Zhao, Z.W., Y.G., G.T., P.L. and Q.Z. performed animal work and prepared biological samples. X. Shen, S.S., Z.L., S.L. and Z.J. constructed the DNA library and performed sequencing. M.L., S.T., L.J., G.Z., Y. Zhang and Y. Li designed the bioinformatics analysis process. Jinbo Zhang, X. Sun, S.Z., L.X. and H. Zhu performed the genome assembly. M.L., Y. Zhang, S.T., G.Z., J.X., M.M., Y.J., M.Z. and H.L. performed the genome annotation and the orthologous and evolutional analyses. Y. Zhang, M.L., S.T., H. Zhao, L.C., Z.N., L.B. and L.Z. identified rapidly evolving genes and pseudogenes. S.T., M.L., J.L., J.M. and A.J. performed the read mapping and SNP identification. M.L., S.T., G.Z., J.L., X.H., X.W., X.G. and M.X. performed phylogenetic and population genetic analysis and linkage disequilibrium analysis. S.T., M.L., Y. Li, G.Z. and L.J. reconstructed demographic history. M.L., S.T., Y. Liu, C.Z. and Jie Zhang performed identification of regions with significant signatures of selective sweep. M.L., S.T., G.Z., L.J., Y. Li and Y. Zhang wrote the paper. R.L., C.K.L.Y., X.L., P.S., G.S.P., K.L. and N.L. revised the paper.

Corresponding authors

Correspondence to Xuewei Li or Ruiqiang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–36, Supplementary Tables 1–8, 10–16, 18–22, 24–27 and 29–36, and a Supplementary Note (PDF 5971 kb)

Supplementary Table 9

Supplementary Table 9 (XLS 165 kb)

Supplementary Table 17

Supplementary Table 17 (XLS 738 kb)

Supplementary Table 23

Supplementary Table 23 (XLS 78 kb)

Supplementary Table 28

Supplementary Table 28 (XLS 90 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Tian, S., Jin, L. et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet 45, 1431–1438 (2013). https://doi.org/10.1038/ng.2811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2811

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research