Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Replicative mechanisms for CNV formation are error prone

Abstract

We investigated 67 breakpoint junctions of gene copy number gains in 31 unrelated subjects. We observed a strikingly high frequency of small deletions and insertions (29%) apparently originating from polymerase slippage events, in addition to frameshifts and point mutations in homonucleotide runs (13%), at or flanking the breakpoint junctions of complex copy number variants. These single-nucleotide variants were generated concomitantly with the de novo complex genomic rearrangement (CGR) event. Our findings implicate low-fidelity, error-prone DNA polymerase activity in synthesis associated with DNA repair mechanisms as the cause of local increase in point mutation burden associated with human CGR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Breakpoint junction mutation load in subjects BAB2626 and BAB2628.
Figure 2: Short and long template switches can be observed on either or both sides of CGR breakpoint junctions.
Figure 3: Breakpoint junction mutational load in subject BAB3027.
Figure 4: Representation of the types of mutations that can be observed at and flanking the breakpoint junctions of MECP2 duplications.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

References

  1. Zhang, F., Carvalho, C.M. & Lupski, J.R. Complex human chromosomal and genomic rearrangements. Trends Genet. 25, 298–307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu, P., Carvalho, C.M., Hastings, P.J. & Lupski, J.R. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 22, 211–220 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Conrad, D.F. et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat. Genet. 42, 385–391 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kidd, J.M. et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 143, 837–847 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bauters, M. et al. Nonrecurrent MECP2 duplications mediated by genomic architecture–driven DNA breaks and break-induced replication repair. Genome Res. 18, 847–858 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carvalho, C.M. et al. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum. Mol. Genet. 18, 2188–2203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carvalho, C.M. et al. Inverted genomic segments and complex triplication rearrangements are mediated by inverted repeats in the human genome. Nat. Genet. 43, 1074–1081 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carvalho, C.M. et al. Evidence for disease penetrance relating to CNV size: Pelizaeus-Merzbacher disease and manifesting carriers with a familial 11 Mb duplication at Xq22. Clin. Genet. 81, 532–541 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Lee, J.A., Carvalho, C.M. & Lupski, J.R.A. DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, F. et al. The DNA replication FoSTeS/MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat. Genet. 41, 849–853 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, F. et al. Identification of uncommon recurrent Potocki-Lupski syndrome–associated duplications and the distribution of rearrangement types and mechanisms in PTLS. Am. J. Hum. Genet. 86, 462–470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, F. et al. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am. J. Hum. Genet. 86, 892–903 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bi, W. et al. Increased LIS1 expression affects human and mouse brain development. Nat. Genet. 41, 168–177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, P. et al. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications. Hum. Mol. Genet. 20, 1975–1988 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Neumann, R., Lawson, V.E. & Jeffreys, A.J. Dynamics and processes of copy number instability in human γ-globin genes. Proc. Natl. Acad. Sci. USA 107, 8304–8309 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicholls, R.D., Fischel-Ghodsian, N. & Higgs, D.R. Recombination at the human α-globin gene cluster: sequence features and topological constraints. Cell 49, 369–378 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Rugless, M.J. et al. A large deletion in the human α-globin cluster caused by a replication error is associated with an unexpectedly mild phenotype. Hum. Mol. Genet. 17, 3084–3093 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bayat, V. et al. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol. 10, e1001288 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oshima, J. et al. Regional genomic instability predisposes to complex dystrophin gene rearrangements. Hum. Genet. 126, 411–423 (2009).

    Article  PubMed  Google Scholar 

  20. Lin, Y. & Waldman, A.S. Promiscuous patching of broken chromosomes in mammalian cells with extrachromosomal DNA. Nucleic Acids Res. 29, 3975–3981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, Y. & Waldman, A.S. Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics 158, 1665–1674 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Slack, A., Thornton, P.C., Magner, D.B., Rosenberg, S.M. & Hastings, P.J. On the mechanism of gene amplification induced under stress in Escherichia coli. PLoS Genet. 2, e48 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hastings, P.J., Ira, G. & Lupski, J.R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hastings, P.J., Lupski, J.R., Rosenberg, S.M. & Ira, G. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Small, K., Iber, J. & Warren, S.T. Emerin deletion reveals a common X-chromosome inversion mediated by inverted repeats. Nat. Genet. 16, 96–99 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Carvalho, C.M., Zhang, F. & Lupski, J.R. Structural variation of the human genome: mechanisms, assays, and role in male infertility. Syst. Biol. Reprod. Med. 57, 3–16 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell, C.D. et al. Estimating the human mutation rate using autozygosity in a founder population. Nat. Genet. 44, 1277–1281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conrad, D.F. et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kong, A. et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488, 471–475 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roach, J.C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, J., Fan, H.C., Behr, B. & Quake, S.R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lupski, J.R. Genomic rearrangements and sporadic disease. Nat. Genet. 39, S43–S47 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mills, R.E. et al. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res. 16, 1182–1190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun, J.X. et al. A direct characterization of human mutation based on microsatellites. Nat. Genet. 44, 1161–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cleary, J.D. & Pearson, C.E. Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet. 21, 272–280 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stephens, P.J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, J.M., Chuzhanova, N., Stenson, P.D., Ferec, C. & Cooper, D.N. Complex gene rearrangements caused by serial replication slippage. Hum. Mutat. 26, 125–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, J.M., Chuzhanova, N., Stenson, P.D., Ferec, C. & Cooper, D.N. Intrachromosomal serial replication slippage in trans gives rise to diverse genomic rearrangements involving inversions. Hum. Mutat. 26, 362–373 (2005).

    Article  PubMed  Google Scholar 

  42. Chen, J.M., Chuzhanova, N., Stenson, P.D., Ferec, C. & Cooper, D.N. Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. Hum. Mutat. 25, 207–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. McEachern, M.J. & Haber, J.E. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75, 111–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Smith, C.E., Llorente, B. & Symington, L.S. Template switching during break-induced replication. Nature 447, 102–105 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Arlt, M.F., Rajendran, S., Birkeland, S.R., Wilson, T.E. & Glover, T.W. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining. PLoS Genet. 8, e1002981 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Deem, A. et al. Break-induced replication is highly inaccurate. PLoS Biol. 9, e1000594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hicks, W.M., Kim, M. & Haber, J.E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329, 82–85 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shah, K.A. et al. Role of DNA polymerases in repeat-mediated genome instability. Cell Rep. 2, 1088–1095 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iraqui, I. et al. Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet. 8, e1002976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shinawi, M. et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J. Med. Genet. 47, 332–341 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families for their participation in the study. We gratefully acknowledge G. Ira for helpful discussions. This work was supported in part by US National Institute of Neurological Disorders and Stroke (NINDS) grants R01 NS058529 to J.R.L. and 5K08NS062711 to M.B.R, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Young Investigator fellowship from the Science without Borders Program to C.M.B.C. and the National Human Genome Research Institute (NHGRI) grant 5U54HG006542. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NINDS or the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

C.M.B.C. conducted high-density aCGH, breakpoint sequencing and data analysis. D.P. assisted with high-density aCGH and breakpoint sequencing. C.M.B.C. and B.A. designed, performed and implemented microsatellite repeat experiments. M.B.R. coordinated clinical studies and subject recruitment. L.M.F. and J.W.B. conducted SNP genotyping and data analysis. P.F. conducted confirmatory CNV studies. P.J.H. and J.R.L. were involved in research design and data analyses. C.M.B.C., P.J.H. and J.R.L. prepared the manuscript.

Corresponding author

Correspondence to James R Lupski.

Ethics declarations

Competing interests

J.R.L. is a paid consultant for Athena Diagnostics, holds stock ownership in 23andMe, Inc., and Ion Torrent Systems, Inc., and is a coinventor on multiple US and European patents related to molecular diagnostics. The Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from molecular genetic testing offered in the Medical Genetics Laboratories (http://www.bcm.edu/geneticlabs/).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1 and 2 (PDF 2897 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, C., Pehlivan, D., Ramocki, M. et al. Replicative mechanisms for CNV formation are error prone. Nat Genet 45, 1319–1326 (2013). https://doi.org/10.1038/ng.2768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2768

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research