Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development

Abstract

The regulated proliferation and differentiation of neural stem cells before the generation and migration of neurons in the cerebral cortex are central aspects of mammalian development. Periventricular neuronal heterotopia, a specific form of mislocalization of cortical neurons, can arise from neuronal progenitors that fail to negotiate aspects of these developmental processes. Here we show that mutations in genes encoding the receptor-ligand cadherin pair DCHS1 and FAT4 lead to a recessive syndrome in humans that includes periventricular neuronal heterotopia. Reducing the expression of Dchs1 or Fat4 within mouse embryonic neuroepithelium increased progenitor cell numbers and reduced their differentiation into neurons, resulting in the heterotopic accumulation of cells below the neuronal layers in the neocortex, reminiscent of the human phenotype. These effects were countered by concurrent knockdown of Yap, a transcriptional effector of the Hippo signaling pathway. These findings implicate Dchs1 and Fat4 upstream of Yap as key regulators of mammalian neurogenesis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Homozygous or compound heterozygous mutations in FAT4 or DCHS1 result in VMS.
Figure 2: FAT4 is expressed in the embryonic human cerebral cortex, and germline Fat4−/− mice do not exhibit neuronal heterotopia.
Figure 3: Abnormal distribution of neuroprogenitor cells with mouse embryonic cortices electroporated with shFat4 or shDchs1.
Figure 4: Knockdown of Fat4 or Dchs1 leads to increased proliferation of neuroprogenitor cells and accumulation of neuronal precursors.
Figure 5: Knockdown of Yap, a transcriptional activator negatively regulated by Hippo signaling, rescues the proliferation and differentiation phenotype produced by shRNA-mediated knockdown of Fat4 or Dchs1.

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  2. Sidman, R.L. & Rakic, P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 62, 1–35 (1973).

    CAS  PubMed  Google Scholar 

  3. Métin, C., Vallee, R.B., Rakic, P. & Bhide, P.G. Modes and mishaps of neuronal migration in the mammalian brain. J. Neurosci. 28, 11746–11752 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Fox, J.W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    CAS  PubMed  Google Scholar 

  5. Manzini, M.C. & Walsh, C.A. What disorders of cortical development tell us about the cortex: one plus one does not always make two. Curr. Opin. Genet. Dev. 21, 333–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sarkisian, M.R., Bartley, C.M. & Rakic, P. Trouble making the first move: interpreting arrested neuronal migration in the cerebral cortex. Trends Neurosci. 31, 54–61 (2008).

    CAS  PubMed  Google Scholar 

  7. Carabalona, A. et al. A glial origin for periventricular nodular heterotopia caused by impaired expression of Filamin-A. Hum. Mol. Genet. 21, 1004–1017 (2012).

    CAS  PubMed  Google Scholar 

  8. Ferland, R.J. et al. Disruption of neural progenitors along the ventricular and subventricular zones in periventricular heterotopia. Hum. Mol. Genet. 18, 497–516 (2009).

    CAS  PubMed  Google Scholar 

  9. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansen, D.V., Lui, J.H., Parker, P.R. & Kriegstein, A.R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    CAS  PubMed  Google Scholar 

  11. Fietz, S.A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010).

    CAS  PubMed  Google Scholar 

  12. Chenn, A., Zhang, Y.A., Chang, B.T. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).

    CAS  PubMed  Google Scholar 

  13. Chenn, A. & McConnell, S.K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    CAS  PubMed  Google Scholar 

  14. Junghans, D. et al. β-catenin–mediated cell-adhesion is vital for embryonic forebrain development. Dev. Dyn. 233, 528–539 (2005).

    CAS  PubMed  Google Scholar 

  15. Kadowaki, M. et al. N-cadherin mediates cortical organization in the mouse brain. Dev. Biol. 304, 22–33 (2007).

    CAS  PubMed  Google Scholar 

  16. Zechner, D. et al. β-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    CAS  PubMed  Google Scholar 

  17. Machon, O. et al. Role of β-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122, 129–143 (2003).

    CAS  PubMed  Google Scholar 

  18. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107 (2006).

    CAS  PubMed  Google Scholar 

  19. Cappello, S. et al. A radial glia-specific role of RhoA in double cortex formation. Neuron 73, 911–924 (2012).

    CAS  PubMed  Google Scholar 

  20. Lien, W.H. et al. αE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 311, 1609–1612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, S. et al. The apical complex couples cell fate and cell survival to cerebral cortical development. Neuron 66, 69–84 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Costa, M.R. et al. Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Development 135, 11–22 (2008).

    CAS  PubMed  Google Scholar 

  23. Bultje, R.S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ishiuchi, T. et al. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J. Cell Biol. 185, 959–967 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. van Maldergem, L. et al. Mental retardation with blepharo-naso-facial abnormalities and hand malformations: a new syndrome? Clin. Genet. 41, 22–24 (1992).

    CAS  PubMed  Google Scholar 

  26. Mansour, S. et al. Van Maldergem syndrome: further characterisation and evidence for neuronal migration abnormalities and autosomal recessive inheritance. Eur. J. Hum. Genet. 20, 1024–1031 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Neuhann, T.M. et al. A further patient with van Maldergem syndrome. Eur. J. Med. Genet. 55, 423–428 (2012).

    CAS  PubMed  Google Scholar 

  28. Tanoue, T. & Takeichi, M. New insights into Fat cadherins. J. Cell Sci. 118, 2347–2353 (2005).

    CAS  PubMed  Google Scholar 

  29. Nagar, B., Overduin, M., Ikura, M. & Rini, J.M. Structural basis of calcium-induced E-cadherin rigidification and dimerization. Nature 380, 360–364 (1996).

    CAS  PubMed  Google Scholar 

  30. Pilichou, K. et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113, 1171–1179 (2006).

    CAS  PubMed  Google Scholar 

  31. Dibbens, L.M. et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 40, 776–781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010–1015 (2008).

    CAS  PubMed  Google Scholar 

  33. Mao, Y. et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138, 947–957 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahoney, P.A. et al. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67, 853–868 (1991).

    CAS  PubMed  Google Scholar 

  35. Clark, H.F. et al. Dachsous encodes a member of the cadherin superfamily that controls imaginal disc morphogenesis in Drosophila. Genes Dev. 9, 1530–1542 (1995).

    CAS  PubMed  Google Scholar 

  36. Katoh, Y. & Katoh, M. Comparative integromics on FAT1, FAT2, FAT3 and FAT4. Int. J. Mol. Med. 18, 523–528 (2006).

    CAS  PubMed  Google Scholar 

  37. Barak, T. et al. Recessive LAMC3 mutations cause malformations of occipital cortical development. Nat. Genet. 43, 590–594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Feng, Y. et al. Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. USA 103, 19836–19841 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hart, A.W. et al. Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum. Mol. Genet. 15, 2457–2467 (2006).

    CAS  PubMed  Google Scholar 

  40. Corbo, J.C. et al. Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J. Neurosci. 22, 7548–7557 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bai, J. et al. RNAi reveals doublecortin is required for radial migration in rat neocortex. Nat. Neurosci. 6, 1277–1283 (2003).

    CAS  PubMed  Google Scholar 

  42. Kerjan, G. & Gleeson, J.G. Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly. Trends Genet. 23, 623–630 (2007).

    CAS  PubMed  Google Scholar 

  43. Ramos, R.L., Bai, J. & LoTurco, J.J. Heterotopia formation in rat but not mouse neocortex after RNA interference knockdown of DCX. Cereb. Cortex 16, 1323–1331 (2006).

    PubMed  Google Scholar 

  44. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Matakatsu, H. & Blair, S.S. Separating the adhesive and signaling functions of the Fat and Dachsous protocadherins. Development 133, 2315–2324 (2006).

    CAS  PubMed  Google Scholar 

  46. Matakatsu, H. & Blair, S.S. Separating planar cell polarity and Hippo pathway activities of the protocadherins Fat and Dachsous. Development 139, 1498–1508 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Adler, P.N., Charlton, J. & Liu, J. Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling. Development 125, 959–968 (1998).

    CAS  PubMed  Google Scholar 

  48. Ishikawa, H.O., Takeuchi, H., Haltiwanger, R.S. & Irvine, K.D. Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 321, 401–404 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Simon, M.A., Xu, A., Ishikawa, H.O. & Irvine, K.D. Modulation of fat:dachsous binding by the cadherin domain kinase four-jointed. Curr. Biol. 20, 811–817 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Brittle, A.L. et al. Four-jointed modulates growth and planar polarity by reducing the affinity of dachsous for fat. Curr. Biol. 20, 803–810 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nat. Genet. 38, 1142–1150 (2006).

    CAS  PubMed  Google Scholar 

  52. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Hateren, N.J. et al. FatJ acts via the Hippo mediator Yap1 to restrict the size of neural progenitor cell pools. Development 138, 1893–1902 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kawamori, H. et al. Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev. Growth Differ. 53, 653–667 (2011).

    CAS  PubMed  Google Scholar 

  55. Zhao, B. et al. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(β-TRCP). Genes Dev. 24, 72–85 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, Y. et al. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 30, 741–752 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. Gleeson, J.G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    CAS  PubMed  Google Scholar 

  58. Thomas, C. & Strutt, D. The roles of the cadherins Fat and Dachsous in planar polarity specification in Drosophila. Dev. Dyn. 241, 27–39 (2012).

    CAS  PubMed  Google Scholar 

  59. Grusche, F.A., Richardson, H.E. & Harvey, K.F. Upstream regulation of the hippo size control pathway. Curr. Biol. 20, R574–R582 (2010).

    CAS  PubMed  Google Scholar 

  60. Pan, G. et al. Signal transduction by the Fat cytoplasmic domain. Development 140, 831–842 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yu, F.X. et al. Regulation of the Hippo-YAP pathway by G-protein–coupled receptor signaling. Cell 150, 780–791 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Reddy, B.V. & Irvine, K.D. Regulation of Hippo signaling by EGFR-MAPK signaling through Ajuba family proteins. Dev. Cell 24, 459–471 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Saburi, S., Hester, I., Goodrich, L. & McNeill, H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 139, 1806–1820 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rock, R., Schrauth, S. & Gessler, M. Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev. Dyn. 234, 747–755 (2005).

    CAS  PubMed  Google Scholar 

  65. Mao, Y., Kucuk, B. & Irvine, K.D. Drosophila lowfat, a novel modulator of Fat signaling. Development 136, 3223–3233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bando, T. et al. Lowfat, a mammalian Lix1 homologue, regulates leg size and growth under the Dachsous/Fat signaling pathway during tissue regeneration. Dev. Dyn. 240, 1440–1453 (2011).

    CAS  PubMed  Google Scholar 

  67. Feng, Y. & Irvine, K.D. Processing and phosphorylation of the Fat receptor. Proc. Natl. Acad. Sci. USA 106, 11989–11994 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Willecke, M. et al. Boundaries of Dachsous cadherin activity modulate the Hippo signaling pathway to induce cell proliferation. Proc. Natl. Acad. Sci. USA 105, 14897–14902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sopko, R. et al. Phosphorylation of the tumor suppressor fat is regulated by its ligand Dachsous and the kinase discs overgrown. Curr. Biol. 19, 1112–1117 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, F., Venugopal, V., Murray, B. & Rudenko, G. The structure of neurexin 1α reveals features promoting a role as synaptic organizer. Structure 19, 779–789 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  72. Li, K. & Stockwell, T.B. VariantClassifier: a hierarchical variant classifier for annotated genomes. BMC Res. Notes 3, 191 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Saito, T. In vivo electroporation in the embryonic mouse central nervous system. Nat. Protoc. 1, 1552–1558 (2006).

    CAS  PubMed  Google Scholar 

  74. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Greer, T. & Dunlap, W.P. Analysis of variance with T measures. Psychol. Methods 2, 200–207 (1997).

    Google Scholar 

  76. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).

    Google Scholar 

  77. Dupont, E. et al. Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature 439, 79–83 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the families participating in this study for their involvement. This work was supported by funding from Cure Kids New Zealand and the Health Research Council of New Zealand (10/402) (S.P.R.), the Department of Health through the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre award to Guy's and St. Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust (M.A.S.), Deutsche Forschungsgemeinschaft:SFB 817, Synergy and the Bundesministerium für Bildung und Forschung (M.G. and S.C.). The human embryonic and fetal material was provided by the joint Medical Research Council (grant G0700089)/Wellcome Trust (grant GR082557) Human Developmental Biology Resource. We thank F. Calzolari for the design of the Yap miRNA, P. Malatesta (Department of Experimental Medicine (DiMES), University of Genoa), K. Guan (Life Sciences Institute, University of Michigan) and S. Piccolo (Department of Molecular Medicine, University of Padua School of Medicine) for sharing plasmids and T. Öztürk and A. Waiser for excellent technical support.

Author information

Authors and Affiliations

Authors

Contributions

S.C., M.J.G., S.M., M.G. and S.P.R. conceived and designed the study. S.C., M.J.G., C.B., S.L., M.E., M. Srour, F.F.H., Z.A.J., T.M., N.P., V.M. and M.A.S. performed the experiments and analyzed the data in conjunction with A.J.S.-S., M.A.B., D.M., J.L.M., H.M., M.G. and S.P.R. D.C., T.U., J.T., P.S., N.D.D., L.V.M., T.N., R.N.-E., M. Swinkells, P.T., L.C.W., P.J.G.Z. and S.M. provided reagents, clinical information and analysis of human subjects. S.C., M.J.G., M.G. and S.P.R. wrote the manuscript, which all authors refined and approved.

Corresponding authors

Correspondence to Magdalena Götz or Stephen P Robertson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–6 (PDF 5369 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cappello, S., Gray, M., Badouel, C. et al. Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nat Genet 45, 1300–1308 (2013). https://doi.org/10.1038/ng.2765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing