Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The landscape of somatic mutations in Down syndrome–related myeloid disorders

Subjects

A Corrigendum to this article was published on 25 November 2013

This article has been updated

Abstract

Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome–related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Representative Circos plots of paired TAM and DS-AMKL cases.
Figure 2: Clonal evolution of Down syndrome–related myeloid disorders.
Figure 3: Somatic mutations detected by whole-exome sequencing of Down syndrome–related myeloid disorders.
Figure 4: Driver mutations in Down syndrome–related myeloid disorders and non-DS-AMKL.
Figure 5: Relationship of cohesin mutations with karyotypes and comparison of mutation loads between major gene targets in DS-AMKL and GATA1.

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 30 October 2013

    In the version of this article initially published, the discussion of cited reference 52 should also have noted that the work "reported accumulation of additional somatic mutations (including single cases of SMC3 and EZH2 mutation) during progression from TAM to DS-AMKL." The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Khan, I., Malinge, S. & Crispino, J. Myeloid leukemia in Down syndrome. Crit. Rev. Oncog. 16, 25–36 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Massey, G.V. et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children's Oncology Group (COG) study POG-9481. Blood 107, 4606–4613 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Muramatsu, H. et al. Risk factors for early death in neonates with Down syndrome and transient leukaemia. Br. J. Haematol. 142, 610–615 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Klusmann, J.H. et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood 111, 2991–2998 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Xu, G. et al. Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome. Blood 102, 2960–2968 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Wechsler, J. et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat. Genet. 32, 148–152 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Walters, D.K. et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10, 65–75 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Malinge, S. et al. Activating mutations in human acute megakaryoblastic leukemia. Blood 112, 4220–4226 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Blink, M. et al. Frequency and prognostic implications of JAK 13 aberrations in Down syndrome acute lymphoblastic and myeloid leukemia. Leukemia 25, 1365–1368 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Hama, A. et al. Molecular lesions in childhood and adult acute megakaryoblastic leukaemia. Br. J. Haematol. 156, 316–325 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Malkin, D., Brown, E.J. & Zipursky, A. The role of p53 in megakaryocyte differentiation and the megakaryocytic leukemias of Down syndrome. Cancer Genet. Cytogenet. 116, 1–5 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Hussein, K. et al. MPLW515L mutation in acute megakaryoblastic leukaemia. Leukemia 23, 852–855 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Creutzig, U. et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood 120, 3187–3205 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Swerdlow, S.H., Jaffe, E.S. & International Agency for Research on Cancer & World Health Organization WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (International Agency for Research on Cancer, Lyon, France, 2008).

  18. 18

    Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19

    Bourquin, J.P. et al. Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. Proc. Natl. Acad. Sci. USA 103, 3339–3344 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Mercher, T. et al. Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia. Proc. Natl. Acad. Sci. USA 98, 5776–5779 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Ma, Z. et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet. 28, 220–221 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Gruber, T.A. et al. An inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 22, 683–697 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Thiollier, C. et al. Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models. J. Exp. Med. 209, 2017–2031 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Gruber, S., Haering, C.H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Nasmyth, K. & Haering, C.H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Wendt, K.S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Ström, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317, 242–245 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28

    Watrin, E. & Peters, J.M. The cohesin complex is required for the DNA damage–induced G2/M checkpoint in mammalian cells. EMBO J. 28, 2625–2635 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29

    Dorsett, D. et al. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132, 4743–4753 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132, 422–433 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Solomon, D.A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Forestier, E. et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood 111, 1575–1583 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33

    Rubio, E.D. et al. CTCF physically links cohesin to chromatin. Proc. Natl. Acad. Sci. USA 105, 8309–8314 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27, 654–666 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Ohlsson, R., Bartkuhn, M. & Renkawitz, R. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 119, 351–360 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36

    Phillips, J.E. & Corces, V.G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Wendt, K.S. & Peters, J.M. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  39. 39

    Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Patel, J.P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Koolen, D.A. et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 44, 639–641 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Zollino, M. et al. Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype. Nat. Genet. 44, 636–638 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Yang, X.J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32, 959–976 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Li, X., Wu, L., Corsa, C.A., Kunkel, S. & Dou, Y. Two mammalian MOF complexes regulate transcription activation by distinct mechanisms. Mol. Cell 36, 290–301 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Bercovich, D. et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372, 1484–1492 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Mullighan, C.G. et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 106, 9414–9418 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Kratz, C.P. et al. Mutational screen reveals a novel JAK2 mutation, L611S, in a child with acute lymphoblastic leukemia. Leukemia 20, 381–383 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Nussenzveig, R.H. et al. Detection of JAK2 mutations in paraffin marrow biopsies by high resolution melting analysis: identification of L611S alone and in cis with V617F in polycythemia vera. Leuk. Lymphoma 53, 2479–2486 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Miyata, Y. & Nishida, E. DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation. Biochim. Biophys. Acta 1813, 1728–1739 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    de Rooij, J.D. et al. NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern. Leukemia doi:10.1038/leu.2013.87 (27 March 2013).10.1038/leu.2013.87

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Nikolaev, S.I. et al. Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down Syndrome. Blood 122, 554–561 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56

    Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Shiraishi, Y. et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res. 41, e89 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58

    Sakaguchi, H. et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat. Genet. 45, 937–941 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61

    Forbes, S.A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011).

    CAS  Article  Google Scholar 

  62. 62

    Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Torres, L. et al. Acute megakaryoblastic leukemia with a four-way variant translocation originating the RBM15-MKL1 fusion gene. Pediatr. Blood Cancer 56, 846–849 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Nannya, Y. et al. A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res. 65, 6071–6079 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Yamamoto, G. et al. Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of Affymetrix single-nucleotide-polymorphism genotyping microarrays. Am. J. Hum. Genet. 81, 114–126 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Mori, M. Nakamura, O. Hagiwara and N. Mizota for their technical assistance. This work was supported by the Research on Measures for Intractable Diseases Project and Health and Labor Sciences Research grants (Research on Intractable Diseases) from the Ministry of Health, Labour and Welfare, by Grants-in-Aid from the Ministry of Health, Labor and Welfare of Japan and KAKENHI (22134006, 23249052, 23118501, 23390266 and 25461579) and by the Japan Society for the Promotion of Science (JSPS) through the Funding Program for World-Leading Innovative Research and Development on Science and Technology (FIRST Program), initiated by the Council for Science and Technology Policy (CSTP) and research grants from the Japan Science and Technology Agency CREST.

Author information

Affiliations

Authors

Contributions

Y.O., Y. Shiraishi, A.S.-O., K.C., H.T. and S.M. performed bioinformatics analyses of the resequencing data. M.S., A.S.-O., Y. Sato, A.H. and H.M. performed microarray experiments and analyses. R.K. and A.H. performed RT-PCR analyses. M.P., K. Terui, R.W., D.H., K.N., H.K., K. Tsukamoto, S.A., K. Kawakami, K. Kato, R.N., S.I., Y.H., S.K. and E.I. collected specimens and were involved in planning the project. K.Y., T.T., H.S., Y.N. and N.S. processed and analyzed genetic materials, prepared the library and performed sequencing. K.Y., T.T., Y.O., A.K. and S.O. generated figures and tables. E.I. and S.O. led the entire project. K.Y. and S.O. wrote the manuscript. All authors participated in discussions and interpretation of the data and results.

Corresponding authors

Correspondence to Etsuro Ito or Seishi Ogawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Tables 1–14 and Supplementary Note (PDF 2603 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoshida, K., Toki, T., Okuno, Y. et al. The landscape of somatic mutations in Down syndrome–related myeloid disorders. Nat Genet 45, 1293–1299 (2013). https://doi.org/10.1038/ng.2759

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing