Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease

Abstract

Kidney cysts occur following inactivation of polycystins in otherwise intact cilia or following complete removal of cilia by inactivation of intraflagellar transport–related proteins. We investigated the mechanisms of cyst formation in these two distinct processes by combining conditional inactivation of polycystins with concomitant ablation of cilia in developing and adult kidney and liver. We found that loss of intact cilia suppressed cyst growth following inactivation of polycystins and that the severity of cystic disease was directly related to the length of time between the initial loss of the polycystin proteins and the subsequent involution of cilia. This cilia-dependent cyst growth was not explained by activation of the MAPK/ERK, mTOR or cAMP pathways and is likely to be distinct from the mechanism of cyst growth following complete loss of cilia. These data establish the existence of a new pathway defined by polycystin-dependent inhibition and cilia-dependent activation that promotes rapid cyst growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concomitant ablation of cilia ameliorates progression of ADPKD.
Figure 2: Polycystic disease severity is directly related to the length of time between polycystin loss and the involution of cilia.
Figure 3: Disruption of cilia reduces kidney cyst growth in adult-onset ADPKD.
Figure 4: Loss of cilia in ADPKD suppresses cyst growth through reduction of cyst cell proliferation.
Figure 5: In vivo MAPK/ERK, mTOR and cAMP signaling as a function of cilia ablation in ADPKD.

Similar content being viewed by others

References

  1. Grantham, J.J., Mulamalla, S. & Swenson-Fields, K.I. Why kidneys fail in autosomal dominant polycystic kidney disease. Nat. Rev. Nephrol. 7, 556–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Gerdes, J.M., Davis, E.E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma, N., Berbari, N.F. & Yoder, B.K. Ciliary dysfunction in developmental abnormalities and diseases. Curr. Top. Dev. Biol. 85, 371–427 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pedersen, L.B. & Rosenbaum, J.L. Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr. Top. Dev. Biol. 85, 23–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Jin, H. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141, 1208–1219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yoder, B.K., Hou, X. & Guay-Woodford, L.M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Pazour, G.J., San Agustin, J.T., Follit, J.A., Rosenbaum, J.L. & Witman, G.B. Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378–R380 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, K. et al. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella. J. Cell Biol. 179, 501–514 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin, F. et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc. Natl. Acad. Sci. USA 100, 5286–5291 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jonassen, J.A., San, A.J., Follit, J.A. & Pazour, G.J. Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J. Cell Biol. 183, 377–384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haycraft, C.J., Swoboda, P., Taulman, P.D., Thomas, J.H. & Yoder, B.K. The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 128, 1493–1505 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Davenport, J.R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586–1594 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nauli, S.M. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33, 129–137 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Boehlke, C. et al. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat. Cell Biol. 12, 1115–1122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tanaka, Y., Okada, Y. & Hirokawa, N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435, 172–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Harris, P.C. & Torres, V.E. Polycystic kidney disease. Annu. Rev. Med. 60, 321–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gallagher, A.R., Germino, G.G. & Somlo, S. Molecular advances in autosomal dominant polycystic kidney disease. Adv. Chronic Kidney Dis. 17, 118–130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou, J. Polycystins and primary cilia: primers for cell cycle progression. Annu. Rev. Physiol. 71, 83–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nishio, S. et al. Loss of oriented cell division does not initiate cyst formation. J. Am. Soc. Nephrol. 21, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibazaki, S. et al. Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1. Hum. Mol. Genet. 17, 1505–1516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fedeles, S.V. et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat. Genet. 43, 639–647 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Piontek, K., Menezes, L.F., Garcia-Gonzalez, M.A., Huso, D.L. & Germino, G.G. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490–1495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Traykova-Brauch, M. et al. An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice. Nat. Med. 14, 979–984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ruzankina, Y. et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1, 113–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Torres, V.E. & Harris, P.C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int. 76, 149–168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Boletta, A. Emerging evidence of a link between the polycystins and the mTOR pathways. Pathogenetics 2, 6 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wallace, D.P. Cyclic AMP–mediated cyst expansion. Biochim. Biophys. Acta 1812, 1291–1300 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Tao, Y., Kim, J., Schrier, R.W. & Edelstein, C.L. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J. Am. Soc. Nephrol. 16, 46–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Shillingford, J.M. et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc. Natl. Acad. Sci. USA 103, 5466–5471 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Granot, Z. et al. LKB1 regulates pancreatic β cell size, polarity, and function. Cell Metab. 10, 296–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walz, G. et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 830–840 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Serra, A.L. et al. Sirolimus and kidney growth in autosomal dominant polycystic kidney disease. N. Engl. J. Med. 363, 820–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Torres, V.E. et al. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat. Med. 10, 363–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gattone, V.H., Wang, X., Harris, P.C. & Torres, V.E. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat. Med. 9, 1323–1326 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Torres, V.E. Cyclic AMP, at the hub of the cystic cycle. Kidney Int. 66, 1283–1285 (2004).

    Article  PubMed  Google Scholar 

  38. Calvet, J.P. Strategies to inhibit cyst formation in ADPKD. Clin. J. Am. Soc. Nephrol. 3, 1205–1211 (2008).

    Article  PubMed  Google Scholar 

  39. Sharma, N. et al. Proximal tubule proliferation is insufficient to induce rapid cyst formation after cilia disruption. J. Am. Soc. Nephrol. 24, 456–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wong, S.Y. et al. Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nat. Med. 15, 1055–1061 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han, Y.G. et al. Dual and opposing roles of primary cilia in medulloblastoma development. Nat. Med. 15, 1062–1065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Yoshiba, S. et al. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338, 226–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goodrich, L.V., Milenkovic, L., Higgins, K.M. & Scott, M.P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Marszalek, J.R., Ruiz-Lozano, P., Roberts, E., Chien, K.R. & Goldstein, L.S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marszalek, J.R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Perl, A.K., Wert, S.E., Nagy, A., Lobe, C.G. & Whitsett, J.A. Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc. Natl. Acad. Sci. USA 99, 10482–10487 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shao, X., Johnson, J.E., Richardson, J.A., Hiesberger, T. & Igarashi, P. A minimal Ksp-cadherin promoter linked to a green fluorescent protein reporter gene exhibits tissue-specific expression in the developing kidney and genitourinary tract. J. Am. Soc. Nephrol. 13, 1824–1836 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Zou, Z. et al. Linking receptor-mediated endocytosis and cell signaling: evidence for regulated intramembrane proteolysis of megalin in proximal tubule. J. Biol. Chem. 279, 34302–34310 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Cai, Y. et al. Identification and characterization of polycystin-2, the PKD2 gene product. J. Biol. Chem. 274, 28557–28565 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Caspary, T., Larkins, C.E. & Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture. Dev. Cell 12, 767–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Saifudeen, Z., Marks, J., Du, H. & El-Dahr, S.S. Spatial repression of PCNA by p53 during kidney development. Am. J. Physiol. Renal Physiol. 283, F727–F733 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to D. Shao and S.A. Mentone for assistance with tissue histology, K. Anderson and T. Caspary (Memorial Sloan-Kettering) for the antibody to Arl13b, P. Aronson (Yale University) for forskolin, E. Brown (University of Pennsylvania) for UBC-creER transgenic mice, L. Goldstein (University of California, San Diego) for Kif3afl mice, the Yale Mouse Metabolic Phenotyping Center for serum urea nitrogen measurement, Core resources from the Yale O'Brien Kidney Center (NIH/NIDDK P30 DK079310) for support with BAC transgenic lines and the Center for Polycystic Kidney Disease Research at Yale (NIH/NIDDK P30 DK090744) for mouse lines. We thank Y. Cai, S. Fedeles, R. Gallagher, Z. Yu and X. Cong for helpful discussions. This work was supported by US National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (NIH/NIDDK) grants R01 DK54053, RC1 DK086738 and R01 DK51041 (S.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.M. codesigned the study, performed experiments and cowrote the manuscript. X.T. performed experiments. P.I. contributed critical reagents and supplementary data. G.J.P. contributed critical reagents. S.S. codesigned the study and wrote the manuscript.

Corresponding author

Correspondence to Stefan Somlo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Note (PDF 2098 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, M., Tian, X., Igarashi, P. et al. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nat Genet 45, 1004–1012 (2013). https://doi.org/10.1038/ng.2715

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2715

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing