Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death

A Corrigendum to this article was published on 29 October 2013

This article has been updated

Abstract

Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases1,2,3. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) and near the HEY2 gene (rs9388451). Independent replication confirmed both signals (meta-analyses: rs10428132, P = 1.0 × 10−68; rs9388451, P = 5.1 × 10−17) and identified one additional signal in SCN5A (at 3p21; rs11708996, P = 1.0 × 10−14). The cumulative effect of the three loci on disease susceptibility was unexpectedly large (Ptrend = 6.1 × 10−81). The association signals at SCN5A-SCN10A demonstrate that genetic polymorphisms modulating cardiac conduction4,5,6,7 can also influence susceptibility to cardiac arrhythmia. The implication of association with HEY2, supported by new evidence that Hey2 regulates cardiac electrical activity, shows that Brugada syndrome may originate from altered transcriptional programming during cardiac development8. Altogether, our findings indicate that common genetic variation can have a strong impact on the predisposition to rare diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide association analysis identifies two susceptibility loci for Brugada syndrome.
Figure 2: Cumulative effect of alleles at the three associated loci on susceptibility to Brugada syndrome.
Figure 3: Increased conduction velocity and sodium channel availability in the RVOT of adult Hey2+/− mice.

Similar content being viewed by others

Change history

  • 04 October 2013

    In the version of this article initially published, Martin Borggrefe and Rainer Schimpf were inadvertently omitted from the author list. Both are affiliated with the First Department of Medicine (Cardiology), University Medical Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, and with DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Mannheim, Germany. In addition, one of the study's funding sources (the Ministry of Health, Labour and Welfare of Japan, research grant for cardiovascular diseases, H24-033) was omitted from the Acknowledgments section. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. Brugada, P. & Brugada, J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol. 20, 1391–1396 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch, C. et al. Brugada syndrome: Report of the Second Consensus Conference Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111, 659–670 (2005).

    Article  PubMed  Google Scholar 

  3. Kapplinger, J.D. et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7, 33–46 (2010).

    Article  PubMed  Google Scholar 

  4. Chambers, J.C. et al. Genetic variation in SCN10A influences cardiac conduction. Nat. Genet. 42, 149–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Holm, H. et al. Several common variants modulate heart rate, PR interval and QRS duration. Nat. Genet. 42, 117–122 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sotoodehnia, N. et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat. Genet. 42, 1068–1076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leimeister, C., Externbrink, A., Klamt, B. & Gessler, M. Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech. Dev. 85, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Straus, S.M.J.M. et al. The incidence of sudden cardiac death in the general population. J. Clin. Epidemiol. 57, 98–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Priori, S.G. et al. Task Force on Sudden Cardiac Death, European Society of Cardiology, Summary of Recommendations. Europace 4, 3–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Q. et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Wilde, A.A.M. et al. The pathophysiological mechanism underlying Brugada syndrome: depolarization versus repolarization. J. Mol. Cell Cardiol. 49, 543–553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crotti, L. et al. Spectrum and prevalence of mutations involving BrS1-through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 60, 1410–1418 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Priori, S.G. et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 102, 2509–2515 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Probst, V. et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome (clinical perspective). Circ Cardiovasc Genet 2, 552–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Schulze-Bahr, E. et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum. Mutat. 21, 651–652 (2003).

    Article  PubMed  CAS  Google Scholar 

  17. Hermida, J.-S. et al. Prospective evaluation of the familial prevalence of the Brugada syndrome. Am. J. Cardiol. 106, 1758–1762 (2010).

    Article  PubMed  Google Scholar 

  18. Balkau, B. An epidemiologic survey from a network of French Health Examination Centres, (D.E.S.I.R.): epidemiologic data on the insulin resistance syndrome. Rev. Epidemiol. Sante Publique 44, 373–375 (1996).

    CAS  PubMed  Google Scholar 

  19. Arking, D.E. et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat. Genet. 38, 644–651 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Newton-Cheh, C. et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pfeufer, A. et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eijgelsheim, M. et al. Genome-wide association analysis identifies multiple loci related to resting heart rate. Hum. Mol. Genet. 19, 3885–3894 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marroni, F. et al. A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ Cardiovasc Genet 2, 322–328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akopian, A.N., Sivilotti, L. & Wood, J.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Verkerk, A.O. et al. Functional Nav1.8 channels in intracardiac neurons: the link between SCN10A and cardiac electrophysiology. Circ. Res. 111, 333–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, T. et al. Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ. Res. 111, 322–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pallante, B.A. et al. Contactin-2 expression in the cardiac Purkinje fiber network. Circ Arrhythm Electrophysiol 3, 186–194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van den Boogaard, M. et al. Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer. J. Clin. Invest. 122, 2519–2530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arnolds, D.E. et al. TBX5 drives Scn5a expression to regulate cardiac conduction system function. J. Clin. Invest. 122, 2509–2518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shao, W., Halachmi, S. & Brown, M. ERAP140, a conserved tissue-specific nuclear receptor coactivator. Mol. Cell Biol. 22, 3358–3372 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fischer, A. & Gessler, M. Hey genes in cardiovascular development. Trends Cardiovasc. Med. 13, 221–226 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Xin, M. et al. Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function. Proc. Natl. Acad. Sci. USA 104, 7975–7980 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kokubo, H. et al. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ. Res. 95, 540–547 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Gessler, M. et al. Mouse gridlock: no aortic coarctation or deficiency, but fatal cardiac defects in Hey2−/− mice. Curr. Biol. 12, 1601–1604 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sakata, Y. et al. Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc. Natl. Acad. Sci. USA 99, 16197–16202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koibuchi, N. & Chin, M.T. CHF1/Hey2 plays a pivotal role in left ventricular maturation through suppression of ectopic atrial gene expression. Circ. Res. 100, 850–855 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Fischer, A. et al. Hey basic helix-loop-helix transcription factors are repressors of GATA4 and GATA6 and restrict expression of the GATA target gene ANF in fetal hearts. Mol. Cell Biol. 25, 8960–8970 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Remme, C.A. et al. The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium. Basic Res. Cardiol. 104, 511–522 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nademanee, K. et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation 123, 1270–1279 (2011).

    Article  PubMed  Google Scholar 

  42. Sakuma, M. et al. Incidence and outcome of osteoporotic fractures in 2004 in Sado City, Niigata Prefecture, Japan. J. Bone Miner. Metab. 26, 373–378 (2008).

    Article  PubMed  Google Scholar 

  43. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frayley, C. & Raftery, A.E. MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering (Department of Statistics, University of Washington, Seattle, 2006).

  45. Byers, S. & Raftery, A.E. Nearest-neighbor clutter removal for estimating features in spatial point processes. J. Am. Stat. Assoc. 93, 577–584 (1998).

    Article  Google Scholar 

  46. Postel-Vinay, S. et al. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat. Genet. 44, 323–327 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Pirinen, M., Donnelly, P. & Spencer, C.C.A. Including known covariates can reduce power to detect genetic effects in case-control studies. Nat. Genet. 44, 848–851 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Stouffer, S.A., Suchman, E.A., Devinney, L.C., Star, S.A. & Williams, R.M. Jr. The American Soldier: Adjustment During Army Life (Studies in Social Psychology in World War II, Vol. 1) (Princeton University Press, Princeton, NJ, 1949).

  49. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    Article  CAS  Google Scholar 

  51. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 1, 457–470 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kolder, I.C.R.M., Tanck, M.W.T. & Bezzina, C.R. Common genetic variation modulating cardiac ECG parameters and susceptibility to sudden cardiac death. J. Mol. Cell Cardiol. 52, 620–629 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Meyre, D. et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. 41, 157–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Higgins, J.P.T. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  56. Little, R.J.A. & Rubin, D.B. Statistical Analysis with Missing Data (Wiley and Sons, New York, 1987).

  57. Rubin, D.B. Multiple Imputation for Nonresponse in Surveys (2008) http://onlinelibrary.wiley.com/book/10.1002/9780470316696.

  58. Lin, S., Chakravarti, A. & Cutler, D.J. Exhaustive allelic transmission disequilibrium tests as a new approach to genome-wide association studies. Nat. Genet. 36, 1181–1188 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Wray, N.R., Yang, J., Goddard, M.E. & Visscher, P.M. The genetic interpretation of area under the ROC curve in genomic profiling. PLoS Genet. 6, e1000864 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Remme, C.A. et al. Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation 114, 2584–2594 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Beekman, C. de Gier-de Vries, B. de Jonge and the Genomic Platform of Nantes (Biogenouest Genomics) for technical support. We are also grateful to the French Clinical Network against Inherited Cardiac Arrhythmias, which includes the University Hospitals of Nantes, Bordeaux, Rennes, Tours, Brest, Strasbourg, La Réunion, Angers and Montpellier. This study was funded by research grants from the Leducq Foundation (CVD-05; Alliance Against Sudden Cardiac Death), the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant-in-aid for the Project in Sado for Total Health, PROST), the Ministry of Health, Labour and Welfare of Japan (research grant for cardiovascular diseases, H24-033),the French Ministry of Health (PHRC AOR04070, P040411 and PHRCI DGS2001/0248), INSERM (ATIP-Avenir program to R.R.) and the French Regional Council of Pays-de-la-Loire. This research was also supported by the Netherlands Heart Institute (grant 061.02 to C.A.R. and C.R.B.) and the Division for Earth and Life Sciences (ALW; project 836.09.003 to C.A.R.) with financial aid from the Netherlands Organization for Scientific Research (NWO). C.R.B. acknowledges support from the Netherlands Heart Foundation (NHS 2007B202 and 2009B066). J.B. was supported by a research grant from the European Society of Cardiology and the Netherlands Heart Institute (ICIN) and by the French-Dutch Academy through the Van Gogh program. E.S.-B. was supported by the Interdisziplinären Zentrums für Klinische Forschung (IZKF) of the University of Münster and the Collaborative Research Center SFB656. M.G. acknowledges support from the German Research Foundation (DFG-SFB 688 and TP A16). This manuscript is dedicated to the memory of Denis Escande, who founded the Leducq Foundation Network Alliance Against Sudden Cardiac Death.

Author information

Authors and Affiliations

Authors

Contributions

C.R.B., J.-J.S. and R.R. designed the study. Y.M. and J.-B.G. evaluated all ECGs. C.D. coordinated the statistical analyses, which C.D., F.S., P.L. and E.C. carried out. F.G., A.D., S.L. and E.C. performed genotyping for the GWAS. J.B., J.V., V. Portero and K.H. carried out genotyping in the validation sets. A.A.W., H.L.T., H.L.M., V. Probst, F.K., S. Bézieau, S.C., S.K., B.M.B., E.S.-B., S.Z., L.C., P.J.S., F.D., M.T., C.A., S. Bartkowiak, M.B., R.S., P.G., V.F., A.L., D.M.R., P.W., E.R.B., R.B., J.T.-H., M.S.O., N.M., A.N., M.H., S.O., K.H., W.S. and T.A. recruited subjects and participated in clinical and molecular diagnostics. P.F., B.B., O.L., H.W., T.M. and N.E. provided controls. M.G., D.W. and C.W. provided the mice. C.A.R., A.O.V., B.J.B. and R.W. acquired and analyzed electrophysiological data. V.M.C., C.A.R. and R.W. acquired and analyzed protein expression data. C.R.B., J.B., C.A.R., C.D., J.-J.S., V.M.C., R.C. and R.R. interpreted the data. C.R.B., J.-J.S., V. Probst, D.M.R., A.A.W., S.K., E.S.-B., A.L. and R.R. obtained funding. C.R.B., J.B., C.D. and R.R. drafted the manuscript. All coauthors critically revised the manuscript for intellectual content. C.R.B. and R.R. led the study together.

Corresponding authors

Correspondence to Connie R Bezzina or Richard Redon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–6 (PDF 5962 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezzina, C., Barc, J., Mizusawa, Y. et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 45, 1044–1049 (2013). https://doi.org/10.1038/ng.2712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing