Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12

Abstract

To identify new genetic risk factors for cervical cancer, we conducted a genome-wide association study in the Han Chinese population. The initial discovery set included 1,364 individuals with cervical cancer (cases) and 3,028 female controls, and we selected a 'stringently matched samples' subset (829 cases and 990 controls) from the discovery set on the basis of principal component analysis; the follow-up stages included two independent sample sets (1,824 cases and 3,808 controls for follow-up 1 and 2,343 cases and 3,388 controls for follow-up 2). We identified strong evidence of associations between cervical cancer and two new loci: 4q12 (rs13117307, Pcombined, stringently matched = 9.69 × 10−9, per-allele odds ratio (OR)stringently matched = 1.26) and 17q12 (rs8067378, Pcombined, stringently matched = 2.00 × 10−8, per-allele ORstringently matched = 1.18). We additionally replicated an association between HLA-DPB1 and HLA-DPB2 (HLA-DPB1/2) at 6p21.32 and cervical cancer (rs4282438, Pcombined, stringently matched = 4.52 × 10−27, per-allele ORstringently matched = 0.75). Our findings provide new insights into the genetic etiology of cervical cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide association results of cervical cancer in Han Chinese individuals.
Figure 2: Regional plots of the four identified marker SNPs.

Similar content being viewed by others

References

  1. Arbyn, M. et al. Worldwide burden of cervical cancer in 2008. Ann. Oncol. 22, 2675–2686 (2011).

    Article  CAS  Google Scholar 

  2. Parkin, D.M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  Google Scholar 

  3. zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl. Cancer Inst. 92, 690–698 (2000).

    Article  CAS  Google Scholar 

  4. zur Hausen, H. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2, 342–350 (2002).

    Article  CAS  Google Scholar 

  5. Walboomers, J.M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

    Article  CAS  Google Scholar 

  6. Chen, T.M., Pecoraro, G. & Defendi, V. Genetic analysis of in vitro progression of human papillomavirus–transfected human cervical cells. Cancer Res. 53, 1167–1171 (1993).

    CAS  PubMed  Google Scholar 

  7. Baseman, J.G. & Koutsky, L.A. The epidemiology of human papillomavirus infections. J. Clin. Virol. 32 (suppl. 1), S16–S24 (2005).

    Article  Google Scholar 

  8. Ho, G.Y., Bierman, R., Beardsley, L., Chang, C.J. & Burk, R.D. Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 338, 423–428 (1998).

    Article  CAS  Google Scholar 

  9. Kulasingam, S.L. et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. J. Am. Med. Assoc. 288, 1749–1757 (2002).

    Article  Google Scholar 

  10. Dalstein, V. et al. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study. Int. J. Cancer 106, 396–403 (2003).

    Article  CAS  Google Scholar 

  11. Magnusson, P.K., Lichtenstein, P. & Gyllensten, U.B. Heritability of cervical tumours. Int. J. Cancer 88, 698–701 (2000).

    Article  CAS  Google Scholar 

  12. Ivansson, E.L., Juko-Pecirep, I., Erlich, H.A. & Gyllensten, U.B. Pathway-based analysis of genetic susceptibility to cervical cancer in situ: HLA-DPB1 affects risk in Swedish women. Genes Immun. 12, 605–614 (2011).

    Article  CAS  Google Scholar 

  13. Freedman, M.L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 (2004).

    Article  CAS  Google Scholar 

  14. de Bakker, P.I. et al. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum. Mol. Genet. 17, R122–R128 (2008).

    Article  CAS  Google Scholar 

  15. Sugihara, K. et al. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat. Cell Biol. 4, 73–78 (2002).

    Article  CAS  Google Scholar 

  16. Munson, M. & Novick, P. The exocyst defrocked, a framework of rods revealed. Nat. Struct. Mol. Biol. 13, 577–581 (2006).

    Article  CAS  Google Scholar 

  17. Rosse, C. et al. An aPKC-exocyst complex controls paxillin phosphorylation and migration through localised JNK1 activation. PLoS Biol. 7, e1000235 (2009).

    Article  Google Scholar 

  18. Zuo, X. et al. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat. Cell Biol. 8, 1383–1388 (2006).

    Article  CAS  Google Scholar 

  19. Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon–dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  Google Scholar 

  20. Bourgault Villada, I. et al. Spontaneous regression of grade 3 vulvar intraepithelial neoplasia associated with human papillomavirus-16–specific CD4+ and CD8+ T-cell responses. Cancer Res. 64, 8761–8766 (2004).

    Article  Google Scholar 

  21. Nicol, A.F. et al. Immune factors involved in the cervical immune response in the HIV/HPV co-infection. J. Clin. Pathol. 61, 84–88 (2008).

    Article  CAS  Google Scholar 

  22. Roeth, J.F. & Collins, K.L. Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol. Mol. Biol. Rev. 70, 548–563 (2006).

    Article  CAS  Google Scholar 

  23. Fenard, D. et al. Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement. J. Immunol. 175, 6050–6057 (2005).

    Article  CAS  Google Scholar 

  24. Schrager, J.A. & Marsh, J.W. HIV-1 Nef increases T cell activation in a stimulus-dependent manner. Proc. Natl. Acad. Sci. USA 96, 8167–8172 (1999).

    Article  CAS  Google Scholar 

  25. Mukerji, J., Olivieri, K.C., Misra, V., Agopian, K.A. & Gabuzda, D. Proteomic analysis of HIV-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation. Retrovirology 9, 33 (2012).

    Article  CAS  Google Scholar 

  26. Di Bonito, P. et al. Anti-tumor CD8+ T cell immunity elicited by HIV-1–based virus-like particles incorporating HPV-16 E7 protein. Virology 395, 45–55 (2009).

    Article  CAS  Google Scholar 

  27. Tamura, M. et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89, 618–629 (2007).

    Article  CAS  Google Scholar 

  28. Carl-McGrath, S., Schneider-Stock, R., Ebert, M. & Rocken, C. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology 40, 13–24 (2008).

    Article  CAS  Google Scholar 

  29. Sun, Q., Yang, J., Xing, G., Zhang, L. & He, F. Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl. Oncol. 1, 73–83 (2008).

    Article  Google Scholar 

  30. Saeki, N. et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-β–dependent apoptotic signalling. Oncogene 26, 6488–6498 (2007).

    Article  CAS  Google Scholar 

  31. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  32. de Bakker, P.I. et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 38, 1166–1172 (2006).

    Article  CAS  Google Scholar 

  33. Wirtz, C. & Sayer, D. Data analysis of HLA sequencing using Assign-SBT v3.6+ from Conexio. Methods Mol. Biol. 882, 87–121 (2012).

    Article  CAS  Google Scholar 

  34. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  35. Solovieff, N. et al. Clustering by genetic ancestry using genome-wide SNP data. BMC Genet. 11, 108 (2010).

    Article  Google Scholar 

  36. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  Google Scholar 

  37. Shi, Y.Y. & He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15, 97–98 (2005).

    Article  CAS  Google Scholar 

  38. Mantel, N. & Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

    CAS  PubMed  Google Scholar 

  39. Setakis, E., Stirnadel, H. & Balding, D.J. Logistic regression protects against population structure in genetic association studies. Genome Res. 16, 290–296 (2006).

    Article  CAS  Google Scholar 

  40. Harley, J.B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    Article  CAS  Google Scholar 

  41. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Fund of the Key Basic Research and Development Program Foundation of China (973 Program) from the Ministry of Science and Technology of China (2009CB521808 and 2013CB911304), grants from the National Natural Science Foundation of China (81230038, 81025011, 81090414, 30973472, 81071663, 81130022, 81121001, 81230052, 81272302, 31000553, 81172464 and 81101964), Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period (2008BAI57B01), the High-Tech Research and Development Program of China (863 Program) (2012AA020801 and 2012AA02A515) and the Fund of the Key Laboratory of Cancer Invasion and Metastasis from Hubei Province and Tongji Hospital (HB001 and xkdy28). This work was also partially supported by the Hubei Research and Development Program (2008BCC005, 2009BCC001 and 2010BCB006), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1025), the Foundation for the Author of National Excellent Doctoral Dissertation of China (201026), the Program for New Century Excellent Talents in University (NCET-09-0550) and the Shanghai Rising-Star Program (12QA1401900). We thank all participants recruited for this study. We would like to thank S. Liu, G. Wu, Z. Wang, S. Xie, S. Chen, Q. Wu, Y. Lu, B. Cao, Y. Li, Q. Chen, D. Zhu, M. Gong, S. Sun, Y. Wang, Y. Qin, R. Yang, J. Feng, T. Wang, L. Shi, J. Jiang, F. Rong, W. Zhou, M. Qian, X. Wu, X. Xia, Y. Yan, Y. Fan, M. Cao, C. Sun, Q. Ling, J. Yang, B. Zhou, Z. Zeng, L. Tang, L. Yu, Y. Han, J. Zhou, Y. Fang, P. Chen and Y. Meng for their useful help.

Author information

Authors and Affiliations

Authors

Contributions

D.M. took full responsibility for the study, especially in conceiving, designing and supervising the research together with Y. Shi and X.X. S.L., L. Li, Z. Hu, Shixuan Wang and J.Z. participated in the study design. D.M., S.L., X.X., L. Li, Z. Hu and Shixuan Wang supervised the diagnosis of patients and subject recruitment. Y. Shi and S.L. supervised the experiments and data analyses. Y. Shi, Zhiqiang Li, X. Li, S.L., T.H. and Z. Han performed statistical analyses, and the results were interpreted by D.M., S.L., Y. Shi and X.X. D.M., X.X., L.H., Y. Shi, L. Li, H.S., Z. Hu, J.Z., Shixuan Wang, S.L., Jihong Liu, D. Lin, C. Wu, Y.C., H. Xing, S.Z., P.Q., Y. Fan, W.D., K.S., X.S., D.W., H.D., Z. Lin, D.D., L.X., X. Cheng, W. Lv, X. Han, G.T., X.M., H.W., F.Q., L. Liu, X. Chen, Jibin Liu, J.W., Yan Shen, L.Y., Z.Y., J.Y., G.M., X. Hu, Y. Feng, H.H., Y. Jiang, Z. Lei, C.L., Y.Z., Z.W., C.Y., S.C., Yuanming Shen, S. Wu, H. Xu, C. Wang and Q.S. contributed reagents, materials and analysis tools and provided samples from different hospitals. S.L., Y. Shi, T.H., Y. Jia, Shaoshuai Wang, R.Y., Z. Hu, L.W., X. Li, K.H., Z.C., Jian Shen, Q.Z., H.Z., F.T., E.G., D. Liu, J.J., Wenjin Li, Jiawei Shen, S.P., Zhuang Li, L.Z., X. Luan, Y.W., M.C., J.C., Jihong Liu and Zheng Li performed the experiments. D.W., X.M. and H.D. provided technical support. The manuscript was drafted by S.L. and Zhiqiang Li under the supervision of D.M., Y. Shi and X.X. All authors critically reviewed the article and approved the final manuscript.

Corresponding authors

Correspondence to Yongyong Shi, Xing Xie or Ding Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary figures 1-5, Supplementary Tables 1-7, 9-12, and 14 (PDF 1288 kb)

Supplementary Table 8

Supplementary Table 8 (XLS 48 kb)

Supplementary Table 13

Supplementary Table 13 (XLS 336 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Li, L., Hu, Z. et al. A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12. Nat Genet 45, 918–922 (2013). https://doi.org/10.1038/ng.2687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2687

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing