ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3

Abstract

Nephronophthisis is an autosomal recessive cystic kidney disease that leads to renal failure in childhood or adolescence. Most NPHP gene products form molecular networks. Here we identify ANKS6 as a new NPHP family member that connects NEK8 (NPHP9) to INVS (NPHP2) and NPHP3. We show that ANKS6 localizes to the proximal cilium and confirm its role in renal development through knockdown experiments in zebrafish and Xenopus laevis. We also identify six families with ANKS6 mutations affected by nephronophthisis, including severe cardiovascular abnormalities, liver fibrosis and situs inversus. The oxygen sensor HIF1AN hydroxylates ANKS6 and INVS and alters the composition of the ANKS6-INVS-NPHP3 module. Knockdown of Hif1an in Xenopus results in a phenotype that resembles loss of other NPHP proteins. Network analyses uncovered additional putative NPHP proteins and placed ANKS6 at the center of this NPHP module, explaining the overlapping disease manifestation caused by mutation in ANKS6, NEK8, INVS or NPHP3.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Anks6 localizes to the cilium, and knockdown results in pronephric cyst formation and laterality defects in zebrafish.
Figure 2: Anks6 deficiency affects pronephros development in Xenopus embryos.
Figure 3: ANKS6 interacts with NEK8, INVS and NPHP3.
Figure 4: ANKS6 forms a complex with NEK8, INVS, NPHP3 and HIF1AN.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. 1

    Hildebrandt, F. & Zhou, W. Nephronophthisis-associated ciliopathies. J. Am. Soc. Nephrol. 18, 1855–1871 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Benzing, T. & Schermer, B. Clinical spectrum and pathogenesis of nephronophthisis. Curr. Opin. Nephrol. Hypertens. 21, 272–278 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Hildebrandt, F., Benzing, T. & Katsanis, N. Ciliopathies. N. Engl. J. Med. 364, 1533–1543 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Halbritter, J. et al. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy. Hum. Genet. published online; doi:10.1007/s00439-013-1297-0 (5 April 2013).10.1007/s00439-013-1297-0

  5. 5

    Sang, L. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 145, 513–528 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Williams, C.L. et al. MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J. Cell Biol. 192, 1023–1041 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Shiba, D., Manning, D.K., Koga, H., Beier, D.R. & Yokoyama, T. Inv acts as a molecular anchor for Nphp3 and Nek8 in the proximal segment of primary cilia. Cytoskeleton (Hoboken) 67, 112–119 (2010).

    CAS  Google Scholar 

  8. 8

    Fukui, H., Shiba, D., Asakawa, K., Kawakami, K. & Yokoyama, T. The ciliary protein Nek8/Nphp9 acts downstream of Inv/Nphp2 during pronephros morphogenesis and left-right establishment in zebrafish. FEBS Lett. 586, 2273–2279 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Otto, E.A. et al. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J. Am. Soc. Nephrol. 19, 587–592 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Gloeckner, C.J., Boldt, K., Schumacher, A., Roepman, R. & Ueffing, M. A novel tandem affinity purification strategy for the efficient isolation and characterisation of native protein complexes. Proteomics 7, 4228–4234 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Brown, J.H. et al. Missense mutation in sterile α motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J. Am. Soc. Nephrol. 16, 3517–3526 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Shiba, D. et al. Localization of Inv in a distinctive intraciliary compartment requires the C-terminal ninein-homolog-containing region. J. Cell Sci. 122, 44–54 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Liu, S. et al. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 129, 5839–5846 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Zhou, W., Dai, J., Attanasio, M. & Hildebrandt, F. Nephrocystin-3 is required for ciliary function in zebrafish embryos. Am. J. Physiol. Renal Physiol. 299, F55–F62 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Tran, U., Pickney, L.M., Ozpolat, B.D. & Wessely, O. Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev. Biol. 307, 152–164 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Satow, R., Chan, T.C. & Asashima, M. The role of Xenopus frizzled-8 in pronephric development. Biochem. Biophys. Res. Commun. 321, 487–494 (2004).

    CAS  Article  Google Scholar 

  17. 17

    Lienkamp, S. et al. Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proc. Natl. Acad. Sci. USA 107, 20388–20393 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Bergmann, C. et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am. J. Hum. Genet. 82, 959–970 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Tory, K. et al. Mutations of NPHP2 and NPHP3 in infantile nephronophthisis. Kidney Int. 75, 839–847 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Chaki, M. et al. Genotype-phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int. 80, 1239–1245 (2011).

    CAS  Article  Google Scholar 

  21. 21

    O'Toole, J.F. et al. Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy. J. Clin. Invest. 120, 791–802 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Wilkins, S.E. et al. Factor inhibiting HIF (FIH) recognizes distinct molecular features within hypoxia-inducible factor-α (HIF-α) versus ankyrin repeat substrates. J. Biol. Chem. 287, 8769–8781 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Schödel, J. et al. Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int. 78, 857–867 (2010).

    Article  Google Scholar 

  24. 24

    Bernhardt, W.M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Tao, Y. et al. VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int. 72, 1358–1366 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Perner, B., Englert, C. & Bollig, F. The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev. Biol. 309, 87–96 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Epting, D. et al. The Rac1 regulator ELMO1 controls vascular morphogenesis in zebrafish. Circ. Res. 107, 45–55 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Ganner, A. et al. Regulation of ciliary polarity by the APC/C. Proc. Natl. Acad. Sci. USA 106, 17799–17804 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Boldt, K., van Reeuwijk, J., Gloeckner, C.J., Ueffing, M. & Roepman, R. Tandem affinity purification of ciliopathy-associated protein complexes. Methods Cell Biol. 91, 143–160 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Keller, A. et al. Experimental protein mixture for validating tandem mass spectral analysis. OMICS 6, 207–212 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to all patients and family members for their participation. We thank A. Sammarco, C. Engel, B. Müller, L. Schomas, S. Bräg and M. Klein for excellent technical assistance, the staff of the Life Imaging Center (LIC) in the Center for Systems Biology, Albert-Ludwigs-University Freiburg for excellent confocal microscopy resources and the support in image recording and analysis, and U. Lanner and E. Haaf of the proteomics core facility. We thank N. Katsanis and J. Willer (Duke University) for providing us with expression constructs for NEK7 and INVS. We thank K. Coene for her help in generating affinity proteomics data for NEK8. We thank E. Jones for making the 3G8 and 4A6 antibodies available through the European Xenopus stock centre. V.F., T.E., H.J.B. and C. Bergmann are employees of Bioscientia, a member of Sonic Healthcare. D.B. is a Higher Education Funding Council for England (HEFCE) Clinical Reader and is supported by Kids Kidney Research. A.K.-Z., G.W., E.W.K., F.G., T.B.H. and S.S.L. are supported by the Deutsche Forschungsgemeinschaft (DFG; KFO 201). E.W.K. is supported by the DFG (KU 1504). C. Boehlke is supported by the Else-Kröner-Fresenius Stiftung. G.W. and T.B.H. are supported by the Excellence Initiative of the German Federal and State Governments (EXC 294-BIOSS). M.U., R.R. and G.W. are supported by the European Community's Seventh Framework Programme (grant agreement 241955, SYSCILIA). R.R. is supported by the Netherlands Organisation for Scientific Research (NWO Vidi-91786396 and Vici-016.130.664). K.B. and M.U. are supported by the European Community's Seventh Framework Programme under grant agreement 278568, PRIMES. This study was supported in part by the Excellence Initiative of the German Federal and State Governments (GSC-4, Spemann Graduate School) and by grants from the Agence Nationale de la Recherche to S.S. (R09087KS and RPV11012KK) and the Fondation pour la Recherche Médicale (DEQ20071210558). This research was supported by grants from the US National Institutes of Health to F.H. (DK068306 and DK090917). F.H. is an Investigator of the Howard Hughes Medical Institute, a Doris Duke Distinguished Clinical Scientist and a Frederick G.L. Huetwell Professor. C. Bergmann received support from the DFG (BE 3910/4-1, ZE 205/14-1 and SFB/TRR57), the Deutsche Nierenstiftung and the PKD Foundation.

Author information

Affiliations

Authors

Contributions

S.H. performed Xenopus and biochemical experiments. D.E. performed zebrafish studies. C. Boehlke, C.S., T.Y., M.H. and M.M. analyzed cilia in various models. J.H., E.F., E.A.O., V.F., T.E., H.J.B., S.S., F.H. and C. Bergmann performed mutational analysis. J.v.R., T.-M.T.N., K.B., N.H., M.U. and R.R. performed affinity proteomic and network analyses. M.W.E., J.A.E.v.W., D.B., N.J.S., S.R., M.V., T.R., M.P., L.P., T.J.N., N.A.S.E., S.J.K. and P.C.H. recruited subjects and provided clinical information. S.H., D.E., T.Y., F.G., T.B.H., E.W.K., A.K.-Z., G.W. and S.S.L. designed experiments and analyzed data. S.H., J.H., R.R., S.S., C. Bergmann, F.H., G.W. and S.S.L. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Friedhelm Hildebrandt or Carsten Bergmann or Soeren S Lienkamp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 2 and 3 (PDF 5140 kb)

Supplementary Table 1

Supplementary Table 1 (XLS 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoff, S., Halbritter, J., Epting, D. et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet 45, 951–956 (2013). https://doi.org/10.1038/ng.2681

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing