Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10−9) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10−8 and 2.9 × 10−7, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , & Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115, 1531–1543 (2009).

  2. 2.

    et al. Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 22, 899–908 (2011).

  3. 3.

    , , & Analysis of the human tumour necrosis factor-α (TNFα) gene promoter polymorphisms in children with bone cancer. J. Med. Genet. 37, 789–792 (2000).

  4. 4.

    , , , & Analysis of polymorphisms of the vitamin D receptor, estrogen receptor, and collagen Iα1 genes and their relationship with height in children with bone cancer. J. Pediatr. Hematol. Oncol. 25, 780–786 (2003).

  5. 5.

    et al. Germ-line genetic variation of TP53 in osteosarcoma. Pediatr. Blood Cancer 49, 28–33 (2007).

  6. 6.

    et al. Analysis of genes critical for growth regulation identifies Insulin-like Growth Factor 2 Receptor variations with possible functional significance as risk factors for osteosarcoma. Cancer Epidemiol. Biomarkers Prev. 16, 1667–1674 (2007).

  7. 7.

    et al. Exploratory analysis of Fas gene polymorphisms in pediatric osteosarcoma patients. J. Pediatr. Hematol. Oncol. 29, 815–821 (2007).

  8. 8.

    et al. Effect of TP53 Arg72Pro and MDM2 SNP309 polymorphisms on the risk of high-grade osteosarcoma development and survival. Clin. Cancer Res. 15, 3550–3556 (2009).

  9. 9.

    et al. Association between TGFBR1*6A and osteosarcoma: a Chinese case-control study. BMC Cancer 10, 169 (2010).

  10. 10.

    et al. Genetic variation at chromosome 8q24 in osteosarcoma cases and controls. Carcinogenesis 31, 1400–1404 (2010).

  11. 11.

    et al. A comprehensive candidate gene approach identifies genetic variation associated with osteosarcoma. BMC Cancer 11, 209 (2011).

  12. 12.

    & Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma 2011, 548151 (2011).

  13. 13.

    et al. Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat. Genet. 44, 323–327 (2012).

  14. 14.

    et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41, 1006–1010 (2009).

  15. 15.

    et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

  16. 16.

    et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).

  17. 17.

    et al. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat. Genet. 42, 978–984 (2010).

  18. 18.

    et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 85, 679–691 (2009).

  19. 19.

    Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  20. 20.

    et al. GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children. Hum. Mol. Genet. 22, 1457–1464 (2013).

  21. 21.

    et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011).

  22. 22.

    et al. A meta-analysis and genome-wide association study of platelet count and mean platelet volume in African Americans. PLoS Genet. 8, e1002491 (2012).

  23. 23.

    et al. Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood 120, 843–846 (2012).

  24. 24.

    et al. A genome-wide association study of testicular germ cell tumor. Nat. Genet. 41, 807–810 (2009).

  25. 25.

    1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  26. 26.

    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  27. 27.

    et al. Prkar1a is an osteosarcoma tumor suppressor that defines a molecular subclass in mice. J. Clin. Invest. 120, 3310–3325 (2010).

  28. 28.

    et al. A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J. Med. Genet. 41, 923–931 (2004).

  29. 29.

    , & Glutamate signaling in healthy and diseased bone. Front. Endocrinol. (Lausanne) 3, 89 (2012).

  30. 30.

    The role of glutamate in the regulation of bone mass and architecture. J. Musculoskelet. Neuronal Interact. 8, 166–173 (2008).

  31. 31.

    , & Characterization of the glutametergic system in MG-63 osteoblast-like osteosarcoma cells. Anticancer Res. 24, 3923–3929 (2004).

  32. 32.

    et al. Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin. Cancer Res. 11, 3288–3295 (2005).

  33. 33.

    et al. Glutamate receptors in pediatric tumors of the central nervous system. Cancer Biol. Ther. 9, 455–468 (2010).

  34. 34.

    et al. Expression of glutamate receptor subunits in human cancers. Histochem. Cell Biol. 132, 435–445 (2009).

  35. 35.

    et al. Silencing of selected glutamate receptor subunits modulates cancer growth. Anticancer Res. 31, 3181–3192 (2011).

  36. 36.

    & Progress in genome-wide association studies of human height. Horm. Res. 71 (suppl. 2), 5–13 (2009).

  37. 37.

    et al. Improved imputation of common and uncommon SNPs with a new reference set. Nat. Genet. 44, 6–7 (2012).

  38. 38.

    , & A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

  39. 39.

    et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011).

  40. 40.

    SequenceLDhot: detecting recombination hotspots. Bioinformatics 22, 3061–3066 (2006).

  41. 41.

    & Approximate likelihood methods for estimating local recombination rates. J. R. Stat. Soc. Series B Stat. Methodol. 64, 657–680 (2002).

  42. 42.

    et al. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat. Genet. 36, 700–706 (2004).

  43. 43.

    & Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165, 2213–2233 (2003).

  44. 44.

    & snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics 23, 774–776 (2007).

  45. 45.

    , , , & A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

Download references


We thank G. Maganoli for tissue banking, M. Fanelli for DNA isolation and C. Ferrari for updating clinicopathological data at the Orthopaedic Rizzoli Institute. We thank A. Griffin and D. Marsilio for data collection and T. Selander and the Biospecimen Repository staff at Mount Sinai Hospital. We acknowledge the advice of F. Real at the Spanish National Cancer Research Centre (CNIO). We thank F. Tesser Gamba at the Pediatric Oncology Institute at GRAACC-UNIFESP, and we also thank the International Sarcoma Kindred Study.

This study was funded by the intramural research program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health and the Bone Cancer Research Trust UK. Research is supported by the Chair's Grant U10 CA98543 and Human Specimen Banking Grant U24 CA114766 to the Children's Oncology Group from the National Cancer Institute, US National Institutes of Health. Additional support for research is provided by a grant from the WWWW (QuadW) Foundation to the Children's Oncology Group. This work was supported by grants to I.L.A. and J.S.W. from the Ontario Research Fund and Canadian Foundation for Innovation. This study was also supported by biobank grants from the Regione Emilia-Romagna and by the infrastructure and personnel of the Royal National Orthopaedic Hospital Musculoskeletal Research Programme and Biobank. Support was also provided to A.M.F. by the National Institute for Health Research UCL Hospitals (UCLH) Biomedical Research Centre and the UCL Experimental Cancer Centre. Funding was also provided by PI10/01580, the Fondo de Investigación Sanitaria (FIS), the Instituto de Salud Carlos III (ISCIII) and the Caja de Ahorros de Navarra (CAN) Programme 'Tú eliges, tú decides' to A.P.-G. and L.S. and by an Asociación Española Contra el Cáncer (AECC) project to F.L.

Author information


  1. Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.

    • Sharon A Savage
    • , Lisa Mirabello
    • , Sonja I Berndt
    • , Mark P Purdue
    • , Neil E Caporaso
    • , Margaret Tucker
    • , Nathaniel Rothman
    • , Maria Teresa Landi
    • , Debra T Silverman
    • , Sholom Wacholder
    • , Rebecca Troisi
    • , Joseph F Fraumeni Jr
    • , Robert N Hoover
    •  & Stephen J Chanock
  2. Cancer Genomics Research Laboratory, National Cancer Institute, Division of Cancer Epidemiology and Genetics, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, USA.

    • Zhaoming Wang
    • , Kevin Jacobs
    • , Charles C Chung
    •  & Meredith Yeager
  3. Nationwide Children's Hospital, Columbus, Ohio, USA.

    • Julie M Gastier-Foster
  4. Department of Pathology and Pediatrics, The Ohio State University, Columbus, Ohio, USA.

    • Julie M Gastier-Foster
  5. Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, New York, USA.

    • Richard Gorlick
  6. Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.

    • Chand Khanna
    • , Paul S Meltzer
    •  & Lee Helman
  7. University College London (UCL) Cancer Institute, London, UK.

    • Adrienne M Flanagan
  8. Royal National Orthopaedic Hospital National Health Service (NHS) Trust, Stanmore, UK.

    • Adrienne M Flanagan
    • , Roberto Tirabosco
    • , Maria Fernanda Amary
    •  & Dina Halai
  9. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.

    • Irene L Andrulis
    • , Jay S Wunder
    •  & Nalan Gokgoz
  10. Department of Pediatrics, University Clinic of Navarra, Universidad de Navarra, Pamplona, Spain.

    • Ana Patiño-Garcia
    • , Luis Sierrasesúmaga
    •  & Fernando Lecanda
  11. Department of Pediatric Oncology, A.Y. Ankara Oncology Training and Research Hospital, Ankara, Turkey.

    • Nilgün Kurucu
    • , Inci Ergurhan Ilhan
    •  & Neriman Sari
  12. Laboratory of Experimental Oncology, Orthopaedic Rizzoli Institute, Bologna, Italy.

    • Massimo Serra
    • , Claudia Hattinger
    •  & Piero Picci
  13. Department of Pediatrics, Division of Epidemiology and Clinical Research, University of Minnesota, Minneapolis, Minnesota, USA.

    • Logan G Spector
  14. Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

    • Donald A Barkauskas
  15. Stanford University, Palo Alto, California, USA.

    • Neyssa Marina
  16. Department of Pediatric Hematology-Oncology, Lucile Packard Children's Hospital, Palo Alto, California, USA.

    • Neyssa Marina
  17. Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.

    • Silvia Regina Caminada de Toledo
    •  & Antonio S Petrilli
  18. Sir Peter MacCallum Department of Oncology, University of Melbourne, East Melbourne, Victoria, Australia.

    • David M Thomas
  19. Harvard School of Public Health, Boston, Massachusetts, USA.

    • Chester Douglass
    • , Peter Kraft
    •  & David J Hunter
  20. Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.

    • Nuria Malats
  21. Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.

    • Manolis Kogevinas
  22. IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.

    • Manolis Kogevinas
  23. Network Biomedical Research Centre in Epidemiology and Public Health (CIBERESP), Barcelona, Spain.

    • Manolis Kogevinas
  24. National School of Public Health, Athens, Greece.

    • Manolis Kogevinas


  1. Search for Sharon A Savage in:

  2. Search for Lisa Mirabello in:

  3. Search for Zhaoming Wang in:

  4. Search for Julie M Gastier-Foster in:

  5. Search for Richard Gorlick in:

  6. Search for Chand Khanna in:

  7. Search for Adrienne M Flanagan in:

  8. Search for Roberto Tirabosco in:

  9. Search for Irene L Andrulis in:

  10. Search for Jay S Wunder in:

  11. Search for Nalan Gokgoz in:

  12. Search for Ana Patiño-Garcia in:

  13. Search for Luis Sierrasesúmaga in:

  14. Search for Fernando Lecanda in:

  15. Search for Nilgün Kurucu in:

  16. Search for Inci Ergurhan Ilhan in:

  17. Search for Neriman Sari in:

  18. Search for Massimo Serra in:

  19. Search for Claudia Hattinger in:

  20. Search for Piero Picci in:

  21. Search for Logan G Spector in:

  22. Search for Donald A Barkauskas in:

  23. Search for Neyssa Marina in:

  24. Search for Silvia Regina Caminada de Toledo in:

  25. Search for Antonio S Petrilli in:

  26. Search for Maria Fernanda Amary in:

  27. Search for Dina Halai in:

  28. Search for David M Thomas in:

  29. Search for Chester Douglass in:

  30. Search for Paul S Meltzer in:

  31. Search for Kevin Jacobs in:

  32. Search for Charles C Chung in:

  33. Search for Sonja I Berndt in:

  34. Search for Mark P Purdue in:

  35. Search for Neil E Caporaso in:

  36. Search for Margaret Tucker in:

  37. Search for Nathaniel Rothman in:

  38. Search for Maria Teresa Landi in:

  39. Search for Debra T Silverman in:

  40. Search for Peter Kraft in:

  41. Search for David J Hunter in:

  42. Search for Nuria Malats in:

  43. Search for Manolis Kogevinas in:

  44. Search for Sholom Wacholder in:

  45. Search for Rebecca Troisi in:

  46. Search for Lee Helman in:

  47. Search for Joseph F Fraumeni in:

  48. Search for Meredith Yeager in:

  49. Search for Robert N Hoover in:

  50. Search for Stephen J Chanock in:


S.A.S. and S.J.C. designed the project. J.M.G.-F., R.G., C.K., A.M.F., R. Tirabosco, I.L.A., J.S.W., N.G., L.G.S., D.A.B., N. Marina, A.P.-G., L.S., F.L., M.S., C.H., P.P., N.K., I.E.I., N.S., S.R.C.d.T., A.S.P., M.F.A., D.H., D.M.T., C.D., P.S.M., S.I.B., M.P.P., N.E.C., M.T., N.R., M.T.L., D.T.S., P.K., D.J.H., N. Malats, M.K., S.W., R. Troisi, L.H., J.F.F. and R.N.H. performed sample collection and clinical characterization. K.J., C.C.C., M.Y. and Z.W. performed genotyping. Z.W. and L.M. performed statistical analysis. The manuscript was written by S.A.S., L.M., Z.W. and S.J.C. and reviewed by all coauthors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Sharon A Savage.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Tables 1–4, Supplementary Figures 1–4

About this article

Publication history






Further reading