Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined sequence-based and genetic mapping analysis of complex traits in outbred rats

Abstract

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence diversity among progenitor strains and genetic architecture of the rat NIH-HS.
Figure 2: Genome scan for platelet aggregation.
Figure 3: Merge analysis to identify causative genes and sequence variants.
Figure 4: Simulation of causal variants.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

NCBI Reference Sequence

Referenced accessions

Protein Data Bank

References

  1. Donnelly, P. Progress and challenges in genome-wide association studies in humans. Nature 456, 728–731 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Flint, J. & Mackay, T.F. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19, 723–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hansen, C. & Spuhler, K. Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol. Clin. Exp. Res. 8, 477–479 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Keane, T.M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Talbot, C.J. et al. High-resolution mapping of quantitative trait loci in outbred mice. Nat. Genet. 21, 305–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Yalcin, B., Flint, J. & Mott, R. Using progenitor strain information to identify quantitative trait nucleotides in outbred mice. Genetics 171, 673–681 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayosi, B.M., Keavney, B., Watkins, H. & Farrall, M. Measured haplotype analysis of the aldosterone synthase gene and heart size. Eur. J. Hum. Genet. 11, 395–401 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Gibbs, R.A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Serikawa, T. et al. National BioResource Project–Rat and related activities. Exp. Anim. 58, 333–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat. Genet. 38, 879–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Johannesson, M. et al. A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: the NIH heterogeneous stock. Genome Res. 19, 150–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kang, H.M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Valdar, W., Holmes, C.C., Mott, R. & Flint, J. Mapping in structured populations by resample model averaging. Genetics 182, 1263–1277 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mott, R., Talbot, C.J., Turri, M.G., Collins, A.C. & Flint, J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97, 12649–12654 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Israely, I. et al. Deletion of the neuron-specific protein δ-catenin leads to severe cognitive and synaptic dysfunction. Curr. Biol. 14, 1657–1663 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Berkel, S. et al. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat. Genet. 42, 489–491 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shirihai, O.S., Gregory, T., Yu, C., Orkin, S.H. & Weiss, M.J. ABC-me: a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO J. 19, 2492–2502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hyde, B.B. et al. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo. Cell Death Differ. 19, 1117–1126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wallström, E.O.T. Rat models of experimental autoimmune encephalomyelitis. in Sourcebook of Models for Biomedical Research (ed. Conn, P.J.) 547–556 (Humana Press, Ottawa, 2007).

  21. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Degner, J.F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Veyrieras, J.B. et al. High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet. 4, e1000214 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang, G.J. et al. High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Res. 19, 1133–1140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jagodic, M. et al. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis. Sci. Transl. Med. 1, 10ra21 (2009).

    Article  PubMed  Google Scholar 

  26. Swanberg, M. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat. Genet. 37, 486–494 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Brenner, M., Laragione, T., Yarlett, N.C. & Gulko, P.S. Genetic regulation of T regulatory, CD4, and CD8 cell numbers by the arthritis severity loci Cia5a, Cia5d, and the MHC/Cia1 in the rat. Mol. Med. 13, 277–287 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang, S., Collins, P.L. & Aune, T.M. T-bet dependent removal of Sin3A-histone deacetylase complexes at the Ifng locus drives Th1 differentiation. J. Immunol. 181, 8372–8381 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Cowley, S.M. et al. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol. Cell. Biol. 25, 6990–7004 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liesa, M. et al. Mitochondrial transporter ATP binding cassette mitochondrial erythroid is a novel gene required for cardiac recovery after ischemia/reperfusion. Circulation 124, 806–813 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ferreira, M.A. et al. Quantitative trait loci for CD4:CD8 lymphocyte ratio are associated with risk of type 1 diabetes and HIV-1 immune control. Am. J. Hum. Genet. 86, 88–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yalcin, B. et al. Commercially available outbred mice for genome-wide association studies. PLoS Genet. 6, pii: e1001085 (2010).

    Article  Google Scholar 

  37. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  39. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fiddy, S., Cattermole, D., Xie, D., Duan, X.Y. & Mott, R. An integrated system for genetic analysis. BMC Bioinformatics 7, 210 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hinrichs, A.S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. R Core Development Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2004).

  45. Magrane, M. & Consortium, U. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011, bar009 (2011).

    Article  Google Scholar 

  46. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Eswar, N., Eramian, D., Webb, B., Shen, M.Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Kasprzyk, A. BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011, bar049 (2011).

    Article  Google Scholar 

  49. Lee, P.H., O'Dushlaine, C., Thomas, B. & Purcell, S.M. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics 28, 1797–1799 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Serikawa (Kyoto University) for the LE/Stm BAC clones. The Human Genome Sequencing Center sequence production teams at the Baylor College of Medicine produced the Sanger sequencing data for the eight sequenced strains used to define the RATDIV SNP genotyping array (see ref. 8 for a list of Baylor College of Medicine HGSC sequencing contributors). We thank E. Redei for providing the NIH-HS rat colony. The funders we would like to acknowledge are as follows: the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-F4-2010-241504 (EURATRANS); The Wellcome Trust (090532/Z/09/Z, 083573/Z/07/Z, 089269/Z/09/Z); The Swedish Research Council (grant K2008-66X-20776-01-4); the Harald and Greta Jeanssons Foundation; The Swedish Association for Persons with Neurological Disabilities; the Åke Wibergs Foundation; the Åke Löwnertz Foundation; Karolinska Institutet funds; the European Union's Sixth Framework Programme EURATools (grant LSHG-CT-2005-019015); the Bibbi and Nils Jensens Foundation; the Söderbergs Foundation; and the Knut and Alice Wallenbergs Foundation. We also thank the Ministerio de Ciencia e Innovación (reference PSI2009-10532 and the Formación de Personal Investigador fellowship to C.M.-C.); the Fundació La Maratò TV3 (reference 092630); the Direcció General de la Recerca (reference 2009SGR-0051); and the British Heart Foundation (BHFRG/07/005/23633). T.J.A. and S.S.A. acknowledge funding from the Imperial BHF Centre of Research Excellence. M. Johannesson acknowledges support from Prof. Nanna Svartz Foundation, The Swedish Rheumatism Association and The King Gustaf V 80th Anniversary Foundation. D. Gauguier acknowledges support from the Institute of Cardiometabolism and Nutrition (ICAN; ANR-10-IAHU-05). T.M. and E.Y.J. acknowledge support from Cancer Research UK (A10976) and the UK Medical Research Council (G9900061). T.F., D.L.K. and I.A. acknowledge support from the U.S. National Institutes of Health (R01 AR047822).

Author information

Authors and Affiliations

Consortia

Contributions

The writing group included A. Baud, R. Hermsen, V.G., D. Gauguier, P.S., T.O., R. Holmdahl, D. Graham, M.W.M., T.F., A.F.-T., N. Hubner, E.C., R.M. and J.F. The phenotyping group included S.C., D. Gauguier, P.S., M.D., J.O., A.D.B., A.G., N.A., A.O.G.-C., M. Jagodic, T.O., M. Johannesson, J.T., U.N., R. Holmdahl, D. Graham, E.B., N. Huynh, W.H.M., M.W.M., A.F.D., D.L.K., T.F., I.A., S.F., N. Hubner, M.O.-P., E.M.-M., R.L.-A., T.C., G.B., E.V.-C., C.M.-C., S.D.-M., A.T. and A.F.-T. The high-density genotyping array design and analysis group included O.H., D.Z., K.S., G.P., A. Bauerfeind, M.-T.B., M.H., Y.-A.L., C.R., H.S., D.A.W., K.C.W., D.M.M., R.A.G., M.L. and N. Hubner. The sequencing group included R. Hermsen, O.H., N.L., G.P., P.T., F.P.R., E.d.B., H.H., S.S.A., T.J.A., P.F., D.J.A., T.K., K.S., N. Hubner, V.G. and E.C. The protein structure group included T.M. and E.Y.J. QTL data analysis was performed by A. Baud, J.F., D.E. and R.M. The project was coordinated by A. Baud, R.L.-A., A.F.D., N. Hubner, M. Johannesson, R. Holmdahl, T.O., D. Gauguier, A.F.-T., R.M., E.C. and J.F.

Corresponding authors

Correspondence to Alberto Fernandez-Teruel, Edwin Cuppen, Richard Mott or Jonathan Flint.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 2 and 4, Supplementary Note (PDF 2186 kb)

Supplementary Table 1

Phenotypes collected, covariates, normalization procedure, mapping method, threshold used for 10% FDR, and number of animals with phenotypic values. (XLS 58 kb)

Supplementary Table 3

QTLs mapped in the NIH-HS, with coordinates, association values, effect sizes, and presence or absence of candidate variants (for the phenotypes mapped using mixed models) (XLS 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rat Genome Sequencing and Mapping Consortium. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat Genet 45, 767–775 (2013). https://doi.org/10.1038/ng.2644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing