Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis

A Corrigendum to this article was published on 29 October 2013

This article has been updated

Abstract

We performed a genome-wide association study of non-Hispanic, white individuals with fibrotic idiopathic interstitial pneumonias (IIPs; n = 1,616) and controls (n = 4,683), with follow-up replication analyses in 876 cases and 1,890 controls. We confirmed association with TERT at 5p15, MUC5B at 11p15 and the 3q26 region near TERC, and we identified seven newly associated loci (Pmeta = 2.4 × 10−8 to 1.1 × 10−19), including FAM13A (4q22), DSP (6p24), OBFC1 (10q24), ATP11A (13q34), DPP9 (19p13) and chromosomal regions 7q22 and 15q14-15. Our results suggest that genes involved in host defense, cell-cell adhesion and DNA repair contribute to risk of fibrotic IIPs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GWAS results at 439,828 SNPs with 1,616 cases and 4,683 controls under an additive model.
Figure 2: Locus-specific plots corresponding to discovery GWAS results for all loci reaching genome-wide significance in the GWAS discovery analysis and meta-analysis of the discovery and replication results.
Figure 3: Locus-specific plots corresponding to discovery GWAS results for four additional loci reaching genome-wide significance after the meta-analysis of the discovery and replication results.
Figure 4: Relative expression of DSP in lung tissue from 100 cases and 94 controls.

Change history

  • 01 October 2013

    In the version of this article initially published, the minor alleles for two SNPs (rs2076295 and rs7934606) were listed incorrectly in Table 1. The correct minor allele for rs2076295 is G, and the correct minor allele for rs7934606 is T. As a result, there were two incorrect statements in the text regarding the relationship between the disease risk allele of rs2076295 and DSP expression. The text should have stated that the allele of rs2076295 associated with increased risk of pulmonary fibrosis is associated with decreased DSP expression rather than increased DSP expression. These errors have been corrected in the HTML and PDF versions of the article.

References

  1. 1

    American Thoracic Society & European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. Am. J. Respir. Crit. Care Med. 165, 277–304 (2002).

  2. 2

    Hubbard, R. et al. Exposure to commonly prescribed drugs and the etiology of cryptogenic fibrosing alveolitis: a case-control study. Am. J. Respir. Crit. Care Med. 157, 743–747 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Raghu, G. Idiopathic pulmonary fibrosis: new evidence and an improved standard of care in 2012. Lancet 380, 699–701 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Armanios, M.Y. et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med. 356, 1317–1326 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Tsakiri, K.D. et al. Adult-onset pulmonary fibrosis caused by mutations in telomerase. Proc. Natl. Acad. Sci. USA 104, 7552–7557 (2007).

    CAS  Article  Google Scholar 

  6. 6

    Thomas, A.Q. et al. Heterozygosity for a surfactant protein C gene mutation associated with usual interstitial pneumonitis and cellular nonspecific interstitial pneumonitis in one kindred. Am. J. Respir. Crit. Care Med. 165, 1322–1328 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Lawson, W.E. et al. Genetic mutations in surfactant protein C are a rare cause of sporadic cases of IPF. Thorax 59, 977–980 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Wang, Y. et al. Genetic defects in surfactant protein A2 are associated with pulmonary fibrosis and lung cancer. Am. J. Hum. Genet. 84, 52–59 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    van Moorsel, C.H. et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a Dutch cohort. Am. J. Respir. Crit. Care Med. 182, 1419–1425 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Mushiroda, T. et al. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. J. Med. Genet. 45, 654–656 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Seibold, M.A. et al. A common MUC5B promoter polymorphism and pulmonary fibrosis. N. Engl. J. Med. 364, 1503–1512 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12

    Boucher, R.C. Idiopathic pulmonary fibrosis—a sticky business. N. Engl. J. Med. 364, 1560–1561 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Steele, M.P. et al. Clinical and pathologic features of familial interstitial pneumonia. Am. J. Respir. Crit. Care Med. 172, 1146–1152 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Zhang, Y., Noth, I., Garcia, J.G. & Kaminski, N. A variant in the promoter of MUC5B and idiopathic pulmonary fibrosis. N. Engl. J. Med. 364, 1576–1577 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Stock, C.J. et al. Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax published online; 10.1136/thoraxjnl-2012-201786 (15 January 2013).

  16. 16

    Boettger, L.M., Handsaker, R.E., Zody, M.C. & McCarroll, S.A. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat. Genet. 44, 881–885 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Steinberg, K.M. et al. Structural diversity and African origin of the 17q21.31 inversion polymorphism. Nat. Genet. 44, 872–880 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Guillouf, C., Gallais, I. & Moreau-Gachelin, F. Spi-1/PU.1 oncoprotein affects splicing decisions in a promoter binding–dependent manner. J. Biol. Chem. 281, 19145–19155 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Rose, M.C. & Voynow, J.A. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245–278 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Crouch, E. Pathobiology of pulmonary fibrosis. Am. J. Physiol. (Lung Cell. Mol. Physiol. 4) 259, L159–L184 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Kuhn, C. et al. An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am. Rev. Respir. Dis. 140, 1693–1703 (1989).

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Korfei, M. et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 178, 838–846 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Alder, J.K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 105, 13051–13056 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Levy, D. et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc. Natl. Acad. Sci. USA 107, 9293–9298 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27

    Mangino, M. et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum. Mol. Genet. 21, 5385–5394 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Dickson, S.P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D.B. Rare variants create synthetic genome-wide associations. PLoS Biol. 8, e1000294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Orozco, G., Barrett, J.C. & Zeggini, E. Synthetic associations in the context of genome-wide association scan signals. Hum. Mol. Genet. 19, R137–R144 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Delva, E., Tucker, D.K. & Kowalczyk, A.P. The desmosome. Cold Spring Harb. Perspect. Biol. 1, a002543 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Awad, M.M., Calkins, H. & Judge, D.P. Mechanisms of disease: molecular genetics of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Nat. Clin. Pract. Cardiovasc. Med. 5, 258–267 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Armstrong, D.K. et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum. Mol. Genet. 8, 143–148 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Whittock, N.V. et al. Striate palmoplantar keratoderma resulting from desmoplakin haploinsufficiency. J. Invest. Dermatol. 113, 940–946 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Whittock, N.V. et al. Compound heterozygosity for non-sense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J. Invest. Dermatol. 118, 232–238 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Al-Owain, M. et al. Novel homozygous mutation in DSP causing skin fragility–woolly hair syndrome: report of a large family and review of the desmoplakin-related phenotypes. Clin. Genet. 80, 50–58 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Yang, Z. et al. Desmosomal dysfunction due to mutations in desmoplakin causes arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Res. 99, 646–655 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Chilosi, M. et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am. J. Pathol. 162, 1495–1502 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Henderson, W.R. Jr. et al. Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 107, 14309–14314 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Yang, L. et al. Desmoplakin acts as a tumor suppressor by inhibition of the Wnt/β-catenin signaling pathway in human lung cancer. Carcinogenesis 33, 1863–1870 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Acharya, P.S., Zukas, A., Chandan, V., Katzenstein, A.L. & Pure, E. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum. Pathol. 37, 352–360 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Yu, D.M., Wang, X.M., Ajami, K., McCaughan, G.W. & Gorrell, M.D. DP8 and DP9 have extra-enzymatic roles in cell adhesion, migration and apoptosis. Adv. Exp. Med. Biol. 575, 63–72 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Janssens, B. et al. αT-catenin: a novel tissue-specific β-catenin–binding protein mediating strong cell-cell adhesion. J. Cell Sci. 114, 3177–3188 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Laurén, J., Airaksinen, M.S., Saarma, M. & Timmusk, T. A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics 81, 411–421 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. 44

    Cho, M.H. et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 42, 200–202 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Zhang, B., Groffen, J. & Heisterkamp, N. Resistance to farnesyltransferase inhibitors in Bcr/Abl-positive lymphoblastic leukemia by increased expression of a novel ABC transporter homolog ATP11a. Blood 106, 1355–1361 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Shulenin, S. et al. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N. Engl. J. Med. 350, 1296–1303 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Bullard, J.E., Wert, S.E., Whitsett, J.A., Dean, M. & Nogee, L.M. ABCA3 mutations associated with pediatric interstitial lung disease. Am. J. Respir. Crit. Care Med. 172, 1026–1031 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48

    Young, L.R. et al. Usual interstitial pneumonia in an adolescent with ABCA3 mutations. Chest 134, 192–195 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49

    Soler Artigas, M. et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43, 1082–1090 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50

    Katoh, Y. & Katoh, M. Hedgehog signaling pathway and gastric cancer. Cancer Biol. Ther. 4, 1050–1054 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Selman, M., Pardo, A. & Kaminski, N. Idiopathic pulmonary fibrosis: aberrant recapitulation of developmental programs? PLoS Med. 5, e62 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52

    Gross, T.J. & Hunninghake, G.W. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 345, 517–525 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53

    King, T.E. Jr. et al. Effect of interferon γ-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet 374, 222–228 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54

    Regan, E.A. et al. Genetic epidemiology of COPD (COPDGene) study design. COPD 7, 32–43 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55

    Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56

    Heath, S.C. et al. Investigation of the fine structure of European populations with applications to disease association studies. Eur. J. Hum. Genet. 16, 1413–1429 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).

    Google Scholar 

  58. 58

    Hansen, B.B. & Klopfer, S.O. Optimal full matching and related designs via network flows. J. Comput. Graph. Statist. 15, 1–19 (2006).

    Article  Google Scholar 

  59. 59

    Harley, J.B. et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat. Genet. 40, 204–210 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61

    Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62

    Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Delaneau, O., Zagury, J.F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    CAS  Article  Google Scholar 

  65. 65

    Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66

    Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. G3 (Bethesda) 1, 457–470 (2011).

    Article  Google Scholar 

  67. 67

    Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the individuals who participated in the studies that contributed to this work. This research was supported by the National Heart, Lung, and Blood Institute (R01-HL095393, R01-HL097163, P01-HL092870, RC2-HL101715, U01-HL089897, U01-HL089856, U01-HL108642 and P50-HL0894932), the Veterans Administration (1I01BX001534), the Dorothy P. and Richard P. Simmons Center and InterMune.

Author information

Affiliations

Authors

Contributions

T.E.F. and D.A.S. designed the study. K.K.B., M.P.S., J.E.L., G.P.C., D.L., S.G., H.R.C., P.J.W., R.M.d.B., C.K.G., M.S.D., G.G., H.J.I., N.K., Y.Z., K.F.G., L.H.L., W.R.M., T.M.M., P.L.M., A.U.W., J.D. Crapo, B.J.M., E.A.R. and M.I.S. performed clinical, radiological and pathological phenotyping of study subjects. W.Z.B., K.K. and S.D.S. provided data and samples from the InterMune subjects. J.T., R.N.K. and C.R.M. coordinated the clinical evaluations. E.M. supervised and coordinated the laboratory work. E.M., J.D. Cogan, D.S.W., J.J.D., D.Z. and K.S. performed the laboratory work. D.M. organized the database. K.B.B. supervised the replication genotyping. M.L. supervised the genome-wide genotyping. M.F.M., M.S., A.P., D.S.K. and M.I.S. provided advice on design and relevance to pulmonary fibrosis. T.E.F., W.Z., A.L.P., B.S.P. and Y.K. analyzed the data. T.E.F., M.L. and D.A.S. developed the conceptual approaches to data analysis. T.E.F. and D.A.S. wrote the manuscript.

Corresponding authors

Correspondence to Tasha E Fingerlin or David A Schwartz.

Ethics declarations

Competing interests

The authors have filed applications with the US Patent Office entitled 'Methods and Compositions for Risk Prediction, Diagnosis, Prognosis, and Treatment of Pulmonary Disorders' (application serial number 61/298473; D.A.S. and T.E.F.) and 'Use of MUC5B Gene Expression in Therapeutics' (application serial number 61/693861; D.A.S.).

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–11 and Supplementary Figures 1–4 (PDF 1443 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fingerlin, T., Murphy, E., Zhang, W. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat Genet 45, 613–620 (2013). https://doi.org/10.1038/ng.2609

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing