Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome

Abstract

Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small-vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure1. Atypical HUS (aHUS) can result from genetic or autoimmune factors2 that lead to pathologic complement cascade activation3. Using exome sequencing, we identified recessive mutations in DGKE (encoding diacylglycerol kinase ɛ) that co-segregated with aHUS in nine unrelated kindreds, defining a distinctive Mendelian disease. Affected individuals present with aHUS before age 1 year, have persistent hypertension, hematuria and proteinuria (sometimes in the nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets and podocytes. Arachidonic acid–containing diacylglycerols (DAG) activate protein kinase C (PKC), which promotes thrombosis, and DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a prothrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treating individuals with aHUS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kidney biopsies of subjects with DGKE mutations show histological features of chronic thrombotic microangiopathy.
Figure 2: DGKE mutations in aHUS.
Figure 3: Clinical course of aHUS due to DGKE mutation.
Figure 4: DGKE protein is expressed in endothelium, platelets and podocytes.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

NCBI Reference Sequence

References

  1. Neild, G.H. Haemolytic-uraemic syndrome in practice. Lancet 343, 398–401 (1994).

    Article  CAS  Google Scholar 

  2. Loirat, C. & Frémeaux-Bacchi, V. Atypical hemolytic uremic syndrome. Orphanet J. Rare Dis. 6, 60 (2011).

    Article  Google Scholar 

  3. Noris, M., Mescia, F. & Remuzzi, G. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat. Rev. Nephrol. 8, 622–633 (2012).

    Article  CAS  Google Scholar 

  4. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  Google Scholar 

  5. Zuber, J., Fakhouri, F., Roumenina, L.T., Loirat, C. & Frémeaux-Bacchi, V. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat. Rev. Nephrol. 8, 643–657 (2012).

    Article  CAS  Google Scholar 

  6. Tang, W., Bunting, M., Zimmerman, G.A., McIntyre, T.M. & Prescott, S.M. Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J. Biol. Chem. 271, 10237–10241 (1996).

    Article  CAS  Google Scholar 

  7. Shulga, Y.V., Topham, M.K. & Epand, R.M. Regulation and functions of diacylglycerol kinases. Chem. Rev. 111, 6186–6208 (2011).

    Article  CAS  Google Scholar 

  8. Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  Google Scholar 

  9. Pettitt, T.R. et al. Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D–derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells. J. Biol. Chem. 272, 17354–17359 (1997).

    Article  CAS  Google Scholar 

  10. Carew, M.A., Paleolog, E.M. & Pearson, J.D. The roles of protein kinase C and intracellular Ca2+ in the secretion of von Willebrand factor from human vascular endothelial cells. Biochem. J. 286, 631–635 (1992).

    Article  CAS  Google Scholar 

  11. Ren, S., Shatadal, S. & Shen, G.X. Protein kinase C-β mediates lipoprotein-induced generation of PAI-1 from vascular endothelial cells. Am. J. Physiol. Endocrinol. Metab. 278, E656–E662 (2000).

    Article  CAS  Google Scholar 

  12. Whatley, R.E. et al. The regulation of platelet-activating factor production in endothelial cells. The role of calcium and protein kinase C. J. Biol. Chem. 264, 6325–6333 (1989).

    CAS  PubMed  Google Scholar 

  13. Herbert, J.M., Savi, P., Laplace, M.C., Dumas, A. & Dol, F. Chelerythrine, a selective protein kinase C inhibitor, counteracts pyrogen-induced expression of tissue factor without effect on thrombomodulin down-regulation in endothelial cells. Thromb. Res. 71, 487–493 (1993).

    Article  CAS  Google Scholar 

  14. Levin, E.G., Marotti, K.R. & Santell, L. Protein kinase C and the stimulation of tissue plasminogen activator release from human endothelial cells. Dependence on the elevation of messenger RNA. J. Biol. Chem. 264, 16030–16036 (1989).

    CAS  PubMed  Google Scholar 

  15. Offermans, S. Activation of platelet function through G protein−coupled receptors. Circ. Res. 15, 1293–1304 (2006).

    Article  Google Scholar 

  16. Pettitt, T.R. & Wakelam, M.J. Diacylglycerol kinase ɛ, but not ζ, selectively removes polyunsaturated diacylglycerol, inducing altered protein kinase C distribution in vivo. J. Biol. Chem. 274, 36181–36186 (1999).

    Article  CAS  Google Scholar 

  17. Yada, Y., Ozeki, T., Kanoh, H. & Nozawa, Y. Purification and characterization of cytosolic diacylglycerol kinases of human platelets. J. Biol. Chem. 265, 19237–19243 (1990).

    CAS  PubMed  Google Scholar 

  18. Nunn, D.L. & Watson, S.P. A diacylglycerol kinase inhibitor, R59022, potentiates secretion by and aggregation of thrombin-stimulated human platelets. Biochem. J. 243, 809–813 (1987).

    Article  CAS  Google Scholar 

  19. de Nucci, G., Gryglewski, R.J., Warner, T.D. & Vane, J.R. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc. Natl. Acad. Sci. USA 85, 2334–2338 (1988).

    Article  CAS  Google Scholar 

  20. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  Google Scholar 

  21. Quack, I. et al. PKC mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia. J. Biol. Chem. 286, 12959–12970 (2011).

    Article  CAS  Google Scholar 

  22. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  Google Scholar 

  23. Sison, K. et al. Glomerular structure and function require paracrine, not autocrine, VEGF–VEGFR-2 signaling. J. Am. Soc. Nephrol. 21, 1691–1701 (2010).

    Article  CAS  Google Scholar 

  24. Hoshi, S., Nomoto, K., Kuromitsu, J., Tomari, S. & Nagata, M. High glucose induced VEGF expression via PKC and ERK in glomerular podocytes. Biochem. Biophys. Res. Commun. 290, 177–184 (2002).

    Article  CAS  Google Scholar 

  25. Rask-Madsen, C. & King, G.L. Differential regulation of VEGF signaling by PKC-α and PKC-ɛ in endothelial cells. Arterioscl. Throm. Vasc. Biol. 28, 919–924 (2008).

    Article  CAS  Google Scholar 

  26. Rodriguez de Turco, E.B. et al. Diacylglycerol kinase ɛ regulates seizure susceptibility and long-term potentiation through arachidonoyl-inositol lipid signaling. Proc. Natl. Acad. Sci. USA 98, 4740–4745 (2001).

    Article  CAS  Google Scholar 

  27. Lansigan, F., Isufi, I. & Tagoe, C.E. Microangiopathic haemolytic anaemia resembling thrombotic thrombocytopenic purpura in systemic lupus erythematosus: the role of ADAMTS13. Rheumatology 50, 824–829 (2011).

    Article  CAS  Google Scholar 

  28. Ganesan, C. & Maynard, S.E. Acute kidney injury in pregnancy: the thrombotic microangiopathies. J. Nephrol. 24, 554–563 (2011).

    Article  Google Scholar 

  29. Skerka, C. et al. Autoimmune forms of thrombotic micorangiopathy and membranoproliferative glomerulonephritis: indications for a disease spectrum and common pathogenic principles. Mol. Immunol. 46, 2801–2807 (2009).

    Article  CAS  Google Scholar 

  30. Ozaltin, F. et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J. Am. Soc. Nephrol. 24, 377–384 (2013).

    Article  CAS  Google Scholar 

  31. Nørholm, M.H.H., Shulga, Y.V., Aoki, S., Epand, R.M. & von Heijne, G. Flanking residues help determine whether a hydrophobic segment adopts a monotopic or bitopic topology in the endoplasmic reticulum membrane. J. Biol. Chem. 286, 25284–25290 (2011).

    Article  Google Scholar 

  32. Soldin, S.J., Brugnara, C. & Wong, E.C. (eds). Pediatric Reference Intervals (AACC Press, Washington, DC, 2005).

  33. Sellier-Leclerc, A.-L. et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 18, 2392–2400 (2007).

    Article  CAS  Google Scholar 

  34. Frémeaux-Bacchi, V. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. published online, http://dx.doi.org/10.2215/CJN.04760512 (2013).

  35. Roumenina, L.T. et al. Alternative complement pathway assessment in patients with atypical HUS. J. Immunol. Methods 365, 8–26 (2011).

    Article  CAS  Google Scholar 

  36. Boyden, L.M. et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482, 98–102 (2012).

    Article  CAS  Google Scholar 

  37. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  38. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  Google Scholar 

  39. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  40. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  41. Reeve, J.P. & Rannala, B. DMLE+: Bayesian linkage disequilibrium gene mapping. Bioinformatics 18, 894–895 (2002).

    Article  CAS  Google Scholar 

  42. Genin, E., Tullio-Pelet, A., Begeot, F., Lyonnet, S. & Abel, L. Estimating the age of rare disease mutations: the example of Triple-A syndrome. J. Med. Genet. 41, 445–449 (2004).

    Article  CAS  Google Scholar 

  43. Gudbjartsson, D.F., Jonasson, K., Frigge, M.L. & Kong, A. Allegro, a new computer program for multipoint linkage analysis. Nat. Genet. 25, 12–13 (2000).

    Article  CAS  Google Scholar 

  44. Thiele, H. & Nürnberg, P. HaploPainter: a tool for drawing pedigrees with complex haplotypes. Bioinformatics 21, 1730–1732 (2005).

    Article  CAS  Google Scholar 

  45. Tang, W.H. et al. Glucose and collagen regulate human platelet activity through aldose reductase induction of thromboxane. J. Clin. Invest. 121, 4462–4476 (2011).

    Article  CAS  Google Scholar 

  46. McLean, I.W. & Nakane, P.K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J. Histochem. Cytochem. 22, 1077–1083 (1974).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the subjects with aHUS, their families and the health care professionals whose participation made this study possible; J. Zhang, C. Nelson-Williams, S. Mentone, D. Beury and other members of the complement laboratory at Hôpital Européen Georges-Pompidou for technical support; the staff of the Yale Center for Genome Analysis for exome sequencing; S. Ishibe, S. Shibata, U. Scholl, M.-A. Dragon-Durey, L. Roumenina, M. Malina, Q. Vincent and L. Abel for helpful discussions; and D. Damotte (Assistance Publique-Hôpitaux de Paris, Hôpital Hôtel-Dieu, Service d'Anatomie Pathologique) for the anti-CD34 staining. This work was supported by US National Institutes of Health (NIH) grants U54 HG006504 01 (Yale Center for Mendelian Genomics), P30 DK079310 05 (Yale O'Brien Center for Kidney Research) and UL1TR00142 07 (Yale Center for Translational Science Award), grants from the Délégation Régionale à la Recherche Clinique, Assistance Publique–Hôpitaux de Paris to V.F.-B., such as Programme Hospitalier de Recherche Clinique (AOM08198) and the Association pour l'Information et la Recherche dans les maladies Rénales génétiques (AIRG France), and a European Community FP7 Grant 2012-305608 (EURenOmics) to F.S. and V.F.-B. M.L. is the recipient of a Kidney Research Scientist Core Education and National Training (KRESCENT) Program Post-Doctoral Fellowship Award from the Kidney Foundation of Canada and is a member of the Investigative Medicine PhD program at Yale University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

M.L., V.F.-B. and R.P.L. designed experiments and analyzed data. M.C. and R.P.L. developed the exome analysis protocol. S.M.M., J.D.O., J.A. and H.T. directed the exome capture, DNA sequencing infrastructure and information technology. M.C., M.L., R.P.L., G.N. and P.N. performed bioinformatic and statistical analyses. M.L., W.J. and R.P.L. analyzed the age of shared mutation. M.L., W.J. and V.F.-B. performed Sanger sequencing. W.H.T., J.H. and F.F. performed protein blotting experiments. M.L. performed the immunofluorescence studies. M.L.Q. and F.F. performed the immunohistochemistry studies on human kidneys. F.S., S.T., F.N., F.M., D.M., G.D., V.B., B.L., L.C., M.A.M., E.S. and C.L. ascertained and evaluated patients with aHUS. C.L., V.F.-B. and F.S. recruited patients with aHUS. N.R.-L., G.W.M. and M.C.G. provided renal pathology expertise. M.L., V.F.-B. and R.P.L. wrote the manuscript.

Corresponding authors

Correspondence to Véronique Frémeaux-Bacchi or Richard P Lifton.

Ethics declarations

Competing interests

F.S., F.F., C.L. and V.F.-B. have received fees from Alexion Pharmaceuticals for invited lectures and are members of an expert board supported by Alexion Pharmaceuticals. C.L. is an unpaid coordinator for France for the clinical trial 'Eculizumab in atypical HUS'. P.N. is a founder, CEO and shareholder of ATLAS Biolabs GmbH, a service provider for genomic analyses.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Tables 1–5 (PDF 8179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaire, M., Frémeaux-Bacchi, V., Schaefer, F. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat Genet 45, 531–536 (2013). https://doi.org/10.1038/ng.2590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2590

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research