Pulmonary arterial hypertension (PAH) is a rare, severe disease resulting from progressive obliteration of small-caliber pulmonary arteries by proliferating vascular cells. PAH can occur without recognized etiology (idiopathic PAH), be associated with a systemic disease or occur as a heritable form, with BMPR2 mutated in approximately 80% of familial and 15% of idiopathic PAH cases1,2,3. We conducted a genome-wide association study (GWAS) based on 2 independent case-control studies for idiopathic and familial PAH (without BMPR2 mutations), including a total of 625 cases and 1,525 healthy individuals. We detected a significant association at the CBLN2 locus mapping to 18q22.3, with the risk allele conferring an odds ratio for PAH of 1.97 (1.59–2.45; P = 7.47 × 10−10). CBLN2 is expressed in the lung, and its expression is higher in explanted lungs from individuals with PAH and in endothelial cells cultured from explanted PAH lungs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 54, S43–S54 (2009).

  2. 2.

    et al. Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am. J. Respir. Crit. Care Med. 177, 1377–1383 (2008).

  3. 3.

    et al. Absence of influence of gender and BMPR2 mutation type on clinical phenotypes of pulmonary arterial hypertension. Respir. Res. 11, 73 (2010).

  4. 4.

    & Primary pulmonary hypertension. Lancet 352, 719–725 (1998).

  5. 5.

    & Pulmonary arterial hypertension. Circulation 114, 1417–1431 (2006).

  6. 6.

    et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006).

  7. 7.

    et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

  8. 8.

    et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

  9. 9.

    , , , & Purification and characterisation of cerebellins from human and porcine cerebellum. J. Neurochem. 53, 886–889 (1989).

  10. 10.

    et al. Neuropeptidomics of mouse hypothalamus after imipramine treatment reveal somatostatin as a potential mediator of antidepressant effects. Neuropharmacology 62, 347–357 (2012).

  11. 11.

    , , & Distinct expression of Cbln family mRNAs in developing and adult mouse brains. Eur. J. Neurosci. 24, 750–760 (2006).

  12. 12.

    & Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur. J. Neurosci. 33, 1447–1461 (2011).

  13. 13.

    et al. The synaptic proteins neurexins and neuroligins are widely expressed in the vascular system and contribute to its functions. Proc. Natl. Acad. Sci. USA 106, 20782–20787 (2009).

  14. 14.

    , , & Guidance of vascular and neural network formation. Curr. Opin. Neurobiol. 15, 108–115 (2005).

  15. 15.

    et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 111, 3105–3111 (2005).

  16. 16.

    , & Familial primary pulmonary hypertension: clinical patterns. Am. Rev. Respir. Dis. 129, 194–197 (1984).

  17. 17.

    et al. ACVRL1 germinal mosaic with two mutant alleles in hereditary hemorrhagic telangiectasia associated with pulmonary arterial hypertension. Clin. Genet. 82, 173–179 (2012).

  18. 18.

    3C Study Group. Vascular factors and risk of dementia: design of the Three-City Study and baseline characteristics of the study population. Neuroepidemiology 22, 316–325 (2003).

  19. 19.

    et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 7, e1002091 (2011).

  20. 20.

    et al. Genetics of venous thrombosis: insights from a new genome wide association study. PLoS ONE 6, e25581 (2011).

  21. 21.

    et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43, 429–435 (2011).

  22. 22.

    et al. Genome-wide association study confirms BST1 and suggests a locus on 12q24 as the risk loci for Parkinson's disease in the European population. Hum. Mol. Genet. 20, 615–627 (2011).

  23. 23.

    et al. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 126, 14S–34S (2004).

  24. 24.

    et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

  25. 25.

    & Genomic control for association studies. Biometrics 55, 997–1004 (1999).

  26. 26.

    From genotypes to genes: doubling the sample size. Biometrics 53, 1253–1261 (1997).

  27. 27.

    & Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22, 719–748 (1959).

  28. 28.

    et al. Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22α-targeted overexpression of the serotonin transporter. FASEB J. 23, 4135–4147 (2009).

  29. 29.

    et al. Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 45, 311–322 (2011).

  30. 30.

    et al. Profiling of aortic smooth muscle cell gene expression in response to chronic inhibition of nitric oxide synthase in rats. Circulation 110, 867–873 (2004).

  31. 31.

    et al. C-kit–positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 184, 116–123 (2011).

Download references


We thank E. Fadel and O. Mercier from the Centre Médico-Chirurgical Marie-Lannelongue for their help in lung sample collection. The Pulmonary Hypertension Allele-Associated Risk (PHAAR) project was financially supported by the Agence Nationale pour la Recherche (Project ANR-07-MRAR-021) and by PHRC AOM07-041, INSERM and UPMC. The 3C Study is conducted under a partnership agreement between INSERM, the Victor Segalen–Bordeaux II University and Sanofi-Synthelabo. The Fondation pour la Recherche Médicale funded the preparation and first phase of the study. The 3C Study is also supported by the Caisse Nationale Maladie des Travailleurs Salariés, the Direction Générale de la Santé, the Mutuelle Générale de l'Education Nationale, the Institut de la Longévité, the Agence Française de Sécurité Sanitaire des Produits de Santé, the regional governments of Aquitaine, Bourgogne and Languedoc-Roussillon and the Fondation de France, and the Ministry of Research–INSERM Programme Cohorts and Collection of Biological Material. The Lille Genopole received an unconditional grant from Eisai. The financial supporters had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. M.G. was funded by a grant from the Agence Nationale pour la Recherche (Project PHAAR, ANR-07-MRAR-021) and the Program Hospitalier de Recherche Clinique (PHRC2009 RENOVA-TV). Statistical analyses used the C2BIG computing centre funded by the Fondation pour la Recherche Médicale and Région Ile de France. Collection and management of samples from Vanderbilt University were supported by US NIH grants P01 HL072058 and K23 HL0987431 and Vanderbilt General Clinical Research Center (GCRC) RR000095. Collection of the samples from Columbia University was supported by US NIH grant R01 HL060056.

Author information


  1. Unité Mixte de Recherche en Santé (UMRS) 937, Université Pierre & Marie Curie (UPMC) Université Paris 6 and Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.

    • Marine Germain
    •  & David A Trégouët
  2. Institut Hospitalo-Universitaire (IHU) Cardiométabolisme et Nutrition (ICAN), Paris, France.

    • Marine Germain
    • , Mélanie Eyries
    • , Odette Poirier
    • , Sophie Nadaud
    • , Svetlana Maugenre
    • , David A Trégouët
    •  & Florent Soubrier
  3. UMRS 956, UPMC Université Paris 6 and INSERM, Paris, France.

    • Mélanie Eyries
    • , Odette Poirier
    • , Sophie Nadaud
    • , Svetlana Maugenre
    •  & Florent Soubrier
  4. Department of Genetics, Hôpital Pitié-Salpêtrière, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris, France.

    • Mélanie Eyries
    • , Florence Coulet
    •  & Florent Soubrier
  5. Université Paris–Sud, Faculté de Médecine, Le Kremlin Bicêtre, France.

    • David Montani
    • , Barbara Girerd
    • , Peter Dorfmüller
    • , Christophe Guignabert
    • , Gerald Simonneau
    •  & Marc Humbert
  6. Centre National de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie, Hôpital de Bicêtre, AP-HP, Le Kremlin Bicêtre, France.

    • David Montani
    • , Barbara Girerd
    • , Peter Dorfmüller
    • , Christophe Guignabert
    • , Gerald Simonneau
    •  & Marc Humbert
  7. UMRS 999, INSERM and Université Paris–Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France.

    • David Montani
    • , Barbara Girerd
    • , Peter Dorfmüller
    • , Christophe Guignabert
    • , Gerald Simonneau
    •  & Marc Humbert
  8. Department of Pathology, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France.

    • Peter Dorfmüller
  9. Post-Genomic Platform (P3S), UPMC Université Paris 6, Paris, France.

    • Wassila Carpentier
  10. Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands.

    • Anton Vonk-Noordegraaf
  11. Cardiac Surgery Department, Hôpital Necker–Enfants Malades, AP-HP, Paris, France.

    • Marilyne Lévy
  12. UMRS 765, INSERM and Université Paris Descartes, Paris, France.

    • Marilyne Lévy
  13. Respiratory Disease Department, Centre Hospitalier Universitaire (CHU) Brabois, Vandoeuvre-lès-Nancy, France.

    • Ari Chaouat
  14. UMRS 744, Université de Lille Nord de France and INSERM, Institut Pasteur, Lille, France.

    • Jean-Charles Lambert
    •  & Philippe Amouyel
  15. UMRS 708, UPMC Université Paris 6 and INSERM, Paris, France.

    • Marion Bertrand
  16. UMRS 888, Université Montpellier and INSERM, Montpellier, France.

    • Anne-Marie Dupuy
  17. U897, Université Bordeaux and INSERM, Institut de Santé Publique d'Epidémiologie et de Développement, Bordeaux, France.

    • Luc Letenneur
  18. Commissariat à l'Energie Atomique, Institut de Génomique, Centre National de Génotypage, Evry, France.

    • Mark Lathrop
  19. Centre Hospitalier Régional Universitaire de Lille, Lille, France.

    • Philippe Amouyel
  20. Centre for Human Genetics, University Hospitals of Leuven, Leuven, Belgium.

    • Thomy J L de Ravel
  21. Department of Pneumology, Catholic University of Leuven (KU Leuven), Leuven, Belgium.

    • Marion Delcroix
  22. Department of Pneumology, Gasthuisberg University Hospital, Leuven, Belgium.

    • Marion Delcroix
  23. Department of Pediatrics, Division of Pulmonary, Allergy, and Immunology Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

    • Eric D Austin
  24. Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

    • Ivan M Robbins
    • , Anna R Hemnes
    •  & James E Loyd
  25. Department of Pediatrics, Columbia University, New York, New York, USA.

    • Erika Berman-Rosenzweig
    • , Robyn J Barst
    •  & Wendy K Chung


  1. Search for Marine Germain in:

  2. Search for Mélanie Eyries in:

  3. Search for David Montani in:

  4. Search for Odette Poirier in:

  5. Search for Barbara Girerd in:

  6. Search for Peter Dorfmüller in:

  7. Search for Florence Coulet in:

  8. Search for Sophie Nadaud in:

  9. Search for Svetlana Maugenre in:

  10. Search for Christophe Guignabert in:

  11. Search for Wassila Carpentier in:

  12. Search for Anton Vonk-Noordegraaf in:

  13. Search for Marilyne Lévy in:

  14. Search for Ari Chaouat in:

  15. Search for Jean-Charles Lambert in:

  16. Search for Marion Bertrand in:

  17. Search for Anne-Marie Dupuy in:

  18. Search for Luc Letenneur in:

  19. Search for Mark Lathrop in:

  20. Search for Philippe Amouyel in:

  21. Search for Thomy J L de Ravel in:

  22. Search for Marion Delcroix in:

  23. Search for Eric D Austin in:

  24. Search for Ivan M Robbins in:

  25. Search for Anna R Hemnes in:

  26. Search for James E Loyd in:

  27. Search for Erika Berman-Rosenzweig in:

  28. Search for Robyn J Barst in:

  29. Search for Wendy K Chung in:

  30. Search for Gerald Simonneau in:

  31. Search for David A Trégouët in:

  32. Search for Marc Humbert in:

  33. Search for Florent Soubrier in:


F.S. initiated and supervised the study. F.S., D.A.T., G.S. and M.H. conceived and designed the experiments. D.M., B.G., G.S., M.H., A.V.-N., M.Lévy, A.C., T.J.L.d.R. and M.D. analyzed clinical data of collected individuals with PAH for the discovery cohort. J.-C.L., M.B., A.-M.D., L.L., M.Lathrop and P.A. provided genotyped data for control subjects. E.D.A., I.M.R., A.R.H., J.E.L., E.B.-R., R.J.B. and W.K.C. analyzed the clinical data of the collected individuals with PAH for the replication cohort. M.E. and F.C. managed DNA samples. W.C. performed genotyping. M.G. and D.A.T. performed statistical analysis. M.E., O.P., S.N. and S.M. performed functional analyses. C.G. isolated vascular cells. P.D. performed tissue imaging. D.A.T., M.G., M.E., O.P., S.N. and F.S. analyzed data. F.S., M.G., M.E. and D.A.T. wrote the manuscript. O.P., S.N., M.H., D.M., E.D.A., J.E.L. and W.K.C. reviewed the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Florent Soubrier.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–6 and Supplementary Tables 1, 3, 5 and 6

Excel files

  1. 1.

    Supplementary Table 2

    Association in the replication cohort of the 319 most significant SNPs with i/fPAH detected in the discovery GWAS

  2. 2.

    Supplementary Table 4

    Association analysis of all SNPs located within a 100kb upstream or downstream distance from the CBLN2 gene with ("conditional") and without adjusting for the rs2217560 effect in the discovery GWAS sample.

About this article

Publication history






Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing