Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia

A Corrigendum to this article was published on 29 May 2013

This article has been updated

Abstract

Refractive error is the most common eye disorder worldwide and is a prominent cause of blindness. Myopia affects over 30% of Western populations and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses, including 37,382 individuals from 27 studies of European ancestry and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in individuals of European ancestry, of which 8 were shared with Asians. Combined analysis identified 8 additional associated loci. The new loci include candidate genes with functions in neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2) and eye development (SIX6 and PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for individuals carrying the highest genetic load. Our results, based on a large meta-analysis across independent multiancestry studies, considerably advance understanding of the mechanisms involved in refractive error and myopia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of the GWAS meta-analysis for refractive error in the combined analysis (n = 45,758).
Figure 2: Genetic risk score for myopia.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

Change history

  • 09 May 2013

    In the version of this article initially published, the affiliations of Daniel W.H. Ho were incorrect, and the spelling of Sarayut Janmahasatian in the author list was incorrect. The errors have been corrected in the HTML and PDF versions of this article.

References

  1. Wojciechowski, R. Nature and nurture: the complex genetics of myopia and refractive error. Clin. Genet. 79, 301–320 (2011).

    Article  CAS  Google Scholar 

  2. Mutti, D.O. et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Invest. Ophthalmol. Vis. Sci. 46, 3074–3080 (2005).

    Article  Google Scholar 

  3. Smith, T.S., Frick, K.D., Holden, B.A., Fricke, T.R. & Naidoo, K.S. Potential lost productivity resulting from the global burden of uncorrected refractive error. Bull. World Health Organ. 87, 431–437 (2009).

    Article  CAS  Google Scholar 

  4. Solouki, A.M. et al. A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nat. Genet. 42, 897–901 (2010).

    Article  CAS  Google Scholar 

  5. Shi, Y. et al. Genetic variants at 13q12.12 are associated with high myopia in the Han Chinese population. Am. J. Hum. Genet. 88, 805–813 (2011).

    Article  CAS  Google Scholar 

  6. Nakanishi, H. et al. A genome-wide association analysis identified a novel susceptible locus for pathological myopia at 11q24.1. PLoS Genet. 5, e1000660 (2009).

    Article  Google Scholar 

  7. Li, Z. et al. A genome-wide association study reveals association between common variants in an intergenic region of 4q25 and high-grade myopia in the Chinese Han population. Hum. Mol. Genet. 20, 2861–2868 (2011).

    Article  CAS  Google Scholar 

  8. Li, Y.J. et al. Genome-wide association studies reveal genetic variants in CTNND2 for high myopia in Singapore Chinese. Ophthalmology 118, 368–375 (2011).

    Article  Google Scholar 

  9. Hysi, P.G. et al. A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nat. Genet. 42, 902–905 (2010).

    Article  CAS  Google Scholar 

  10. Fan, Q. et al. Genetic variants on chromosome 1q41 influence ocular axial length and high myopia. PLoS Genet. 8, e1002753 (2012).

    Article  CAS  Google Scholar 

  11. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  Google Scholar 

  12. Verhoeven, V.J. et al. Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Hum. Genet. 131, 1467–1480 (2012).

    Article  Google Scholar 

  13. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  Google Scholar 

  14. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 44, 491–501 (2012).

    Article  CAS  Google Scholar 

  15. ENCODE Project Consortium.. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  16. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).

    Article  CAS  Google Scholar 

  17. Rymer, J. & Wildsoet, C.F. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review. Vis. Neurosci. 22, 251–261 (2005).

    Article  Google Scholar 

  18. Fernández-Medarde, A. et al. RasGRF1 disruption causes retinal photoreception defects and associated transcriptomic alterations. J. Neurochem. 110, 641–652 (2009).

    Article  Google Scholar 

  19. Tonini, R. et al. Expression of Ras-GRF in the SK-N-BE neuroblastoma accelerates retinoic-acid-induced neuronal differentiation and increases the functional expression of the IRK1 potassium channel. Eur. J. Neurosci. 11, 959–966 (1999).

    Article  CAS  Google Scholar 

  20. Abd-El-Barr, M.M. et al. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina. J. Neurophysiol. 102, 1945–1955 (2009).

    Article  Google Scholar 

  21. Beyer, B. et al. Absence seizures in C3H/HeJ and knockout mice caused by mutation of the AMPA receptor subunit Gria4. Hum. Mol. Genet. 17, 1738–1749 (2008).

    Article  CAS  Google Scholar 

  22. Connaughton, V. Glutamate and glutamate receptors in the vertebrate retina. in Webvision: The Organization of the Retina and Visual System (eds. Kolb, H., Fernandez, E. & Nelson, R.) (Natural Library of Medicine, Salt Lake City, Utah, 1995).

  23. Yang, J., Nemargut, J.P. & Wang, G.Y. The roles of ionotropic glutamate receptors along the On and Off signaling pathways in the light-adapted mouse retina. Brain Res. 1390, 70–79 (2011).

    Article  CAS  Google Scholar 

  24. Smith, E.L. III, Fox, D.A. & Duncan, G.C. Refractive-error changes in kitten eyes produced by chronic on-channel blockade. Vision Res. 31, 833–844 (1991).

    Article  Google Scholar 

  25. Fogel, B.L. et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum. Mol. Genet. 21, 4171–4186 (2012).

    Article  CAS  Google Scholar 

  26. Zhang, X., Yang, D. & Hughes, B.A. KCNQ5/Kv7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina. Am. J. Physiol. Cell Physiol. 301, C1017–C1026 (2011).

    Article  CAS  Google Scholar 

  27. Pattnaik, B.R. & Hughes, B.A. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium. Am. J. Physiol. Cell Physiol. 302, C821–C833 (2012).

    Article  CAS  Google Scholar 

  28. Troilo, D., Nickla, D.L., Mertz, J.R. & Summers Rada, J.A. Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets. Invest. Ophthalmol. Vis. Sci. 47, 1768–1777 (2006).

    Article  Google Scholar 

  29. Mertz, J.R. & Wallman, J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp. Eye Res. 70, 519–527 (2000).

    Article  CAS  Google Scholar 

  30. McFadden, S.A., Howlett, M.H. & Mertz, J.R. Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vision Res. 44, 643–653 (2004).

    Article  CAS  Google Scholar 

  31. Parker, R.O. & Crouch, R.K. Retinol dehydrogenases (RDHs) in the visual cycle. Exp. Eye Res. 91, 788–792 (2010).

    Article  CAS  Google Scholar 

  32. Schéele, S. et al. Laminin isoforms in development and disease. J. Mol. Med. (Berl.) 85, 825–836 (2007).

    Article  Google Scholar 

  33. Zhang, Y., Liu, Y. & Wildsoet, C.F. Bidirectional, optical sign-dependent regulation of BMP2 gene expression in chick retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 53, 6072–6080 (2012).

    Article  CAS  Google Scholar 

  34. Ramdas, W.D. et al. A genome-wide association study of optic disc parameters. PLoS Genet. 6, e1000978 (2010).

    Article  Google Scholar 

  35. Gallardo, M.E. et al. Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia/microphthalmia. Am. J. Med. Genet. A. 129A, 92–94 (2004).

    Article  CAS  Google Scholar 

  36. Gal, A. et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. Am. J. Hum. Genet. 88, 382–390 (2011).

    Article  CAS  Google Scholar 

  37. Orr, A. et al. Mutations in a novel serine protease PRSS56 in families with nanophthalmos. Mol. Vis. 17, 1850–1861 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nair, K.S. et al. Alteration of the serine protease PRSS56 causes angle-closure glaucoma in mice and posterior microphthalmia in humans and mice. Nat. Genet. 43, 579–584 (2011).

    Article  CAS  Google Scholar 

  39. Rossin, E.J. et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 7, e1001273 (2011).

    Article  CAS  Google Scholar 

  40. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  Google Scholar 

  41. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  Google Scholar 

  42. Aulchenko, Y.S., Struchalin, M.V. & van Duijn, C.M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).

    Article  Google Scholar 

  43. Chen, W.M. & Abecasis, G.R. Family-based association tests for genomewide association scans. Am. J. Hum. Genet. 81, 913–926 (2007).

    Article  CAS  Google Scholar 

  44. Mägi, R. & Morris, A.P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).

    Article  Google Scholar 

  45. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  Google Scholar 

  46. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  Google Scholar 

  47. Booij, J.C. et al. Functional annotation of the human retinal pigment epithelium transcriptome. BMC Genomics 10, 164 (2009).

    Article  Google Scholar 

  48. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  Google Scholar 

  49. van Soest, S.S. et al. Comparison of human retinal pigment epithelium gene expression in macula and periphery highlights potential topographic differences in Bruch's membrane. Mol. Vis. 13, 1608–1617 (2007).

    CAS  PubMed  Google Scholar 

  50. Hotelling, H. The generalization of Student's ratio. Ann. Math. Stat. 2, 360–378 (1931).

    Article  Google Scholar 

  51. Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

    Article  Google Scholar 

  52. Booij, J.C. et al. A new strategy to identify and annotate human RPE-specific gene expression. PLoS One 5, e9341 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank the invaluable contributions of all study participants, their relatives and staff at the recruitment centers. Complete funding information and acknowledgments by study can be found in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

V.J.M.V., P.G.H., R.W., C.J.H., C.C.W.K., A.W.H., D.A.M., T.L.Y. and C.M.v.D. performed analyses and drafted the manuscript. C.C.W.K., D.S., C.J.H., J.E.B.-W., S.-M.S., C.M.v.D., A.H., D.A.M., S.M., A.D.P., V.V., C.W., P.N.B., T.-Y.W., J.S.R., T.L.Y., K.O., O. Pärssinen, S.P.Y., J.A.G., A. Metspalu, M.P., S.K.I. and N.P. jointly conceived the project and supervised the work. J.E.B.W., S.-M.S., D.A.M., T.L.Y., C.J.H., C.C.W.K., D.S., J.E.B.-W., C.M.v.D., R.W., P.G.H., V.J.M.V., K.O., Y.-Y.T., T.-Y.W., P.N.B., V.V., N.A., B.A.O., A.H., J.R.V., F.R., A.G.U., N.P., C.M., A. Mirshahi, T.Z., B.F., J.F.W., Z.V., O. Polasek, A.F.W., C.H., I.R., S.K.I., E.C., J.H.L., R.P.I., S.J., M.S., J.J.W., P.M., I.C., J.S.R., P.M.C., C.E.P., G.W.M., A. Mishra, W.A., F.M., M.P., L.C.K., T.D.S., E.Y.-D., A.N., O.R., C.-C.K., T.M., A.D., R.T.O., Y.Z., J.L., R.L., P.C., V.A.B., W.-T.T., E.V., T.A., E.-S.T., A. Metspalu, T.H., R.K., B.E.K.K., J.E.C., K.P.B., L.J.C., C.P.P., D.W.H.H., S.P.Y., J.W., O. Pärssinen, J.B.J., L.X., H.S.W., S.M.H., A.D.P., M.K., T.L., K.-M.M., C.L.S., C.W., N.J.T., D.M.E., B.S.P., J.P.K., G.M., G.H.S.B., M.K.I., X.Z., C.-Y.C., A.W.H., S.M., R.H., J.A.G. and Q.F. were responsible for study-specific data. G.H.S.B., V.J.M.V., Q.F. and J.A.G. were involved in the genetic risk score analysis. T.L.Y., A.A.B.B., T.G.M.F.G. and F.H. performed the data expression experiments. A.A.B.B., T.G.M.F.G., A.M. and S.M. were involved in pathway analyses. J.E.B.-W., S.-M.S., D.A.M., T.L.Y., K.O., T.-Y.W., P.N.B., T.G.M.F.G., S.K.I., E.C., J.J.W., A.J.M.H.V., C.-C.K., B.E.K.K., S.P.Y., C.W., N.J.T., G.H.S.B., M.K.I., A.W.H. and J.A.G. critically reviewed the manuscript.

Corresponding author

Correspondence to Caroline C Klaver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members appears in the Supplementary Note.

A full list of members appears in the Supplementary Note.

A full list of members appears in the Supplementary Note.

A full list of members appears in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4, Supplementary Figures 1–5 and Supplementary Note (PDF 4615 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhoeven, V., Hysi, P., Wojciechowski, R. et al. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet 45, 314–318 (2013). https://doi.org/10.1038/ng.2554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing