Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endogenous retroviruses function as species-specific enhancer elements in the placenta

Abstract

The mammalian placenta is remarkably distinct between species, suggesting a history of rapid evolutionary diversification1. To gain insight into the molecular drivers of placental evolution, we compared biochemically predicted enhancers in mouse and rat trophoblast stem cells (TSCs) and found that species-specific enhancers are highly enriched for endogenous retroviruses (ERVs) on a genome-wide level. One of these ERV families, RLTR13D5, contributes hundreds of mouse-specific histone H3 lysine 4 monomethylation (H3K4me1)- and histone H3 lysine 27 acetylation (H3K27ac)-defined enhancers that functionally bind Cdx2, Eomes and Elf5—core factors that define the TSC regulatory network. Furthermore, we show that RLTR13D5 is capable of driving gene expression in rat placental cells. Analysis in other tissues shows that species-specific ERV enhancer activity is generally restricted to hypomethylated tissues, suggesting that tissues permissive for ERV activity gain access to an otherwise silenced source of regulatory variation. Overall, our results implicate ERV enhancer co-option as a mechanism underlying the extensive evolutionary diversification of placental development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The epigenetic landscape of mouse TSCs determined using histone ChIP-seq.
Figure 2: Comparison of mouse and rat shows overabundance of species-specific ERVs in enhancer regions.
Figure 3: The mouse-specific ERV RLTR13D5 is highly enriched within placental enhancers.
Figure 4: Core TSC transcription factors bind RLTR13D5 copies.
Figure 5: RLTR13D5 functions to drive trophoblast expression.
Figure 6: RLTR13D5 enhancer cooption is placenta specific, and species-specific ERV enhancer activity is restricted to TSCs, ESCs and testis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Mossman, H.W. Vertebrate Fetal Membranes: Comparative Ontogeny and Morphology; Evolution; Phylogenetic Significance; Basic Functions; Research Opportunities (Rutgers University Press, New Brunswick, New Jersey, 1987).

  2. Enders, A. Reasons for diversity of placental structure. Placenta 30 (suppl. A), S15–S18 (2009).

    Article  PubMed  Google Scholar 

  3. Crespi, B. & Semeniuk, C. Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am. Nat. 163, 635–653 (2004).

    Article  PubMed  Google Scholar 

  4. Haig, D. Genetic conflicts in human pregnancy. Q. Rev. Biol. 68, 495–532 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Knox, K. & Baker, J.C. Genomic evolution of the placenta using co-option and duplication and divergence. Genome Res. 18, 695–705 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rossant, J. & Cross, J.C. Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Hughes, A.L., Green, J.A., Garbayo, J.M. & Roberts, R.M. Adaptive diversification within a large family of recently duplicated, placentally expressed genes. Proc. Natl. Acad. Sci. USA 97, 3319–3323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou, Z., Romero, R., Uddin, M., Than, N.G. & Wildman, D.E. Adaptive history of single copy genes highly expressed in the term human placenta. Genomics 93, 33–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Chuong, E.B., Tong, W. & Hoekstra, H.E. Maternal-fetal conflict: rapidly evolving proteins in the rodent placenta. Mol. Biol. Evol. 27, 1221–1225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Roberts, R.M. & Fisher, S.J. Trophoblast stem cells. Biol. Reprod. 84, 412–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Beck, A.H. et al. 3′-end sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS ONE 5, e8768 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhou, V.W., Goren, A. & Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  Google Scholar 

  14. Rugg-Gunn, P.J., Cox, B.J., Ralston, A. & Rossant, J. Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc. Natl. Acad. Sci. USA 107, 10783–10790 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9, 397–405 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ref Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004).

  17. Lynch, V.J., Leclerc, R.D., May, G. & Wagner, G.P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43, 1154–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Ng, R.K. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat. Cell Biol. 10, 1280–1290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Russ, A.P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. He, H.-H. et al. Nucleosome dynamics define transcriptional enhancers. Nat. Genet. 42, 343–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoon, S.-J., Wills, A.E., Chuong, E., Gupta, R. & Baker, J.C. HEB and E2A function as SMAD/FOXH1 cofactors. Genes Dev. 25, 1654–1661 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faria, T.N. & Soares, M.J. Trophoblast cell differentiation: establishment, characterization, and modulation of a rat trophoblast cell line expressing members of the placental prolactin family. Endocrinology 129, 2895–2906 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prudhomme, S., Bonnaud, B. & Mallet, F. Endogenous retroviruses and animal reproduction. Cytogenet. Genome Res. 110, 353–364 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Molaro, A. et al. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146, 1029–1041 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rowe, H.M. & Trono, D. Dynamic control of endogenous retroviruses during development. Virology 411, 273–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Cordaux, R. & Batzer, M.A. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10, 691–703 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bourque, G. et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18, 1752–1762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feschotte, C. & Gilbert, C. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Haig, D. Retroviruses and the placenta. Curr. Biol. 22, R609–R613 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Erlebacher, A., Price, K.A. & Glimcher, L.H. Maintenance of mouse trophoblast stem cell proliferation by TGF-β/activin. Dev. Biol. 275, 158–169 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Asanoma, K. et al. FGF4-dependent stem cells derived from rat blastocysts differentiate along the trophoblast lineage. Dev. Biol. 351, 110–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, T. et al. Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol. 12, R83 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bailey, T.L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Newburger, D.E. & Bulyk, M.L. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res. 37, D77–D82 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Giordano, J. et al. Evolutionary history of mammalian transposons determined by genome-wide defragmentation. PLoS Comput. Biol. 3, e137 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chinwalla, A.T. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    Article  PubMed  Google Scholar 

  43. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank G. Barsh for helpful comments, the laboratory of A. Sidow for assistance with sequencing and J. Rossant (Hospital for Sick Children) for contribution of mouse TSCs. This work was supported by the Stanford Genome Training Grant (E.B.C.; T32 HG000044), a National Science Foundation Graduate Research Fellowship (E.B.C.; 2008052909), the Stanford Bio-X program (J.C.B.) and the Burroughs Welcome Prematurity Initiative (J.C.B.; 1008847).

Author information

Authors and Affiliations

Authors

Contributions

E.B.C. and J.C.B. conceived and designed the study and wrote the manuscript. E.B.C. designed and performed RNA-seq and ChIP-seq experiments and analyzed the data. M.A.K.R. and M.J.S. provided rat samples. M.A.K.R. performed luciferase assays.

Corresponding authors

Correspondence to Edward B Chuong or Julie C Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 4086 kb)

Supplementary Table 1

Putative regulatory TEs in mouse TSCs, H3K9me3 (XLS 141 kb)

Supplementary Table 2

Putative regulatory TEs in mouse TSCs, H3K27me3 (XLS 116 kb)

Supplementary Table 3

Putative regulatory TEs in mouse TSCs, H3K4me3/TSS (XLS 98 kb)

Supplementary Table 4

Putative regulatory TEs in mouse TSCs, H3K4me1/distal (XLS 145 kb)

Supplementary Table 5

Putative regulatory TEs in mouse TSCs, H3K27ac/distal (XLS 134 kb)

Supplementary Table 6

Putative regulatory TEs in mouse TSCs, Eomes (XLS 115 kb)

Supplementary Table 7

Putative regulatory TEs in mouse TSCs, Cdx2 (XLS 93 kb)

Supplementary Table 8

Putative regulatory TEs in mouse TSCs, Elf5 (XLS 119 kb)

Supplementary Table 9

Putative regulatory TEs in rat TSCs, H3K9me3 (XLS 101 kb)

Supplementary Table 10

Putative regulatory TEs in rat TSCs, H3K27me3 (XLS 71 kb)

Supplementary Table 11

Putative regulatory TEs in rat TSCs, H3K4me3/TSS (XLS 87 kb)

Supplementary Table 12

Putative regulatory TEs in rat TSCs, H3K4me1/distal (XLS 125 kb)

Supplementary Table 13

Putative regulatory TEs in rat TSCs, H3K27ac/distal (XLS 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuong, E., Rumi, M., Soares, M. et al. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45, 325–329 (2013). https://doi.org/10.1038/ng.2553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing