Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation

Abstract

Aberrant Wnt signaling can drive cancer development. In many cancer types, the genetic basis of Wnt pathway activation remains incompletely understood. Here, we report recurrent somatic mutations of the Drosophila melanogaster tumor suppressor–related gene FAT1 in glioblastoma (20.5%), colorectal cancer (7.7%), and head and neck cancer (6.7%). FAT1 encodes a cadherin-like protein, which we found is able to potently suppress cancer cell growth in vitro and in vivo by binding β-catenin and antagonizing its nuclear localization. Inactivation of FAT1 via mutation therefore promotes Wnt signaling and tumorigenesis and affects patient survival. Taken together, these data strongly point to FAT1 as a tumor suppressor gene driving loss of chromosome 4q35, a prevalent region of deletion in cancer. Loss of FAT1 function is a frequent event during oncogenesis. These findings address two outstanding issues in cancer biology: the basis of Wnt activation in non-colorectal tumors and the identity of a 4q35 tumor suppressor.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The FAT1 gene is deleted and mutated at high prevalence across multiple human cancers, and FAT1 suppresses cancer cell growth and proliferation.
Figure 2: The growth-suppressive properties of FAT1 are abrogated by mutations observed in cancer.
Figure 3: FAT1 inactivation results in increased cancer cell growth and proliferation.
Figure 4: FAT1 is a β-catenin–binding partner, and loss of binding causes aberrant Wnt pathway activation, translocation of β-catenin to the nucleus and enhanced β-catenin–mediated transcription.
Figure 5: Functional relationship between β-catenin and FAT1 in the regulation of proliferation.
Figure 6: Effects of FAT1 inactivation on Wnt/β-catenin signaling.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Borkosky, S.S. et al. Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 135, 703–713 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Brosens, R.P. et al. Deletion of chromosome 4q predicts outcome in stage II colon cancer patients. Anal. Cell Pathol. (Amst.) 33, 95–104 (2010).

    Article  CAS  Google Scholar 

  3. Nakamura, E. et al. Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci. 99, 1390–1400 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Nakaya, K. et al. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene 26, 5300–5308 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. TCGA. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  6. Singh, R.K. et al. Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Hum. Genet. 122, 71–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Katoh, Y. & Katoh, M. Comparative integromics on FAT1, FAT2, FAT3 and FAT4. Int. J. Mol. Med. 18, 523–528 (2006).

    CAS  PubMed  Google Scholar 

  8. Skouloudaki, K. et al. Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc. Natl. Acad. Sci. USA 106, 8579–8584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tanoue, T. & Takeichi, M. New insights into Fat cadherins. J. Cell Sci. 118, 2347–2353 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Tanoue, T. & Takeichi, M. Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J. Cell Biol. 165, 517–528 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bryant, P.J., Huettner, B., Held, L.I. Jr., Ryerse, J. & Szidonya, J. Mutations at the fat locus interfere with cell proliferation control and epithelial morphogenesis in Drosophila. Dev. Biol. 129, 541–554 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Mahoney, P.A. et al. The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67, 853–868 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Mao, Y. et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138, 947–957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saburi, S., Hester, I., Goodrich, L. & McNeill, H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 139, 1806–1820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi, C., Zhu, Y.T., Hu, L. & Zhu, Y.J. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int. J. Cancer 124, 793–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010–1015 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Ishiuchi, T., Misaki, K., Yonemura, S., Takeichi, M. & Tanoue, T. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J. Cell Biol. 185, 959–967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Castillejo-López, C., Arias, W.M. & Baumgartner, S. The fat-like gene of Drosophila is the true orthologue of vertebrate fat cadherins and is involved in the formation of tubular organs. J. Biol. Chem. 279, 24034–24043 (2004).

    Article  PubMed  Google Scholar 

  19. Ciani, L., Patel, A., Allen, N.D. & ffrench-Constant, C. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol. Cell Biol. 23, 3575–3582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Halder, G. & Johnson, R.L. Hippo signaling: growth control and beyond. Development 138, 9–22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rock, R., Schrauth, S. & Gessler, M. Expression of mouse dchs1, fjx1, and fat-j suggests conservation of the planar cell polarity pathway identified in Drosophila. Dev. Dyn. 234, 747–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lustig, B. & Behrens, J. The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol. 129, 199–221 (2003).

    CAS  PubMed  Google Scholar 

  25. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Zechner, D. β-catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, W. et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling. Nat. Genet. 26, 146–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Miyoshi, Y. et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum. Mol. Genet. 1, 229–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Ilyas, M., Tomlinson, I.P., Rowan, A., Pignatelli, M. & Bodmer, W.F. β-catenin mutations in cell lines established from human colorectal cancers. Proc. Natl. Acad. Sci. USA 94, 10330–10334 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Morin, P.J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Sadot, E., Simcha, I., Shtutman, M., Ben-Ze'ev, A. & Geiger, B. Inhibition of β-catenin–mediated transactivation by cadherin derivatives. Proc. Natl. Acad. Sci. USA 95, 15339–15344 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Simcha, I. et al. Cadherin sequences that inhibit β-catenin signaling: a study in yeast and mammalian cells. Mol. Biol. Cell 12, 1177–1188 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7, 619–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Hou, R., Liu, L., Anees, S., Hiroyasu, S. & Sibinga, N.E. The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. J. Cell Biol. 173, 417–429 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol. 141, 1433–1448 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin–induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Jung, H.C. & Kim, K. Identification of MYCBP as a β-catenin/LEF-1 target using DNA microarray analysis. Life Sci. 77, 1249–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sonoda, Y. et al. Formation of intracranial tumors by genetically modified human astrocytes defines four pathways critical in the development of human anaplastic astrocytoma. Cancer Res. 61, 4956–4960 (2001).

    CAS  PubMed  Google Scholar 

  43. Clark, M.J. et al. U87MG decoded: the genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet. 6, e1000832 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Vistejnova, L. et al. The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuroendocrinol. Lett. 30 (suppl. 1), 121–127 (2009).

    CAS  PubMed  Google Scholar 

  45. Ke, N. The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol. Biol. 740, 33–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Dunne, J. et al. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics 30, 207–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Chan, T.A., Wang, Z., Dang, L.H., Vogelstein, B. & Kinzler, K.W. Targeted inactivation of CTNNB1 reveals unexpected effects of β-catenin mutation. Proc. Natl. Acad. Sci. USA 99, 8265–8270 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmalhofer, O., Brabletz, S. & Brabletz, T. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 28, 151–166 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Kolligs, F.T. et al. ITF-2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with β-catenin defects and promotes neoplastic transformation. Cancer Cell 1, 145–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Rockman, S.P. et al. Id2 is a target of the β-catenin/T cell factor pathway in colon carcinoma. J. Biol. Chem. 276, 45113–45119 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Dohadwala, M. et al. Cyclooxygenase-2–dependent regulation of E-cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 66, 5338–5345 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Miwa, N. et al. Involvement of claudin-1 in the β-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 12, 469–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Onder, T.T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 68, 3645–3654 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Fujii, M. et al. TGF-β synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth. J. Exp. Med. 209, 479–494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila homolog of YAP. Cell 122, 421–434 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, J. et al. YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat. Cell Biol. 11, 1444–1450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, B., Li, L. & Guan, K.L. Hippo signaling at a glance. J. Cell Sci. 123, 4001–4006 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Verhaak, R.G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. TCGA. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  61. Orsulic, S., Huber, O., Aberle, H., Arnold, S. & Kemler, R. E-cadherin binding prevents β-catenin nuclear localization and β-catenin/LEF-1–mediated transactivation. J. Cell Sci. 112, 1237–1245 (1999).

    CAS  PubMed  Google Scholar 

  62. Saldanha, G., Ghura, V., Potter, L. & Fletcher, A. Nuclear β-catenin in basal cell carcinoma correlates with increased proliferation. Br. J. Dermatol. 151, 157–164 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Gottardi, C.J., Wong, E. & Gumbiner, B.M. E-cadherin suppresses cellular transformation by inhibiting β-catenin signaling in an adhesion-independent manner. J. Cell Biol. 153, 1049–1060 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Venkiteswaran, K. . et al. Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and β-catenin. Am. J. Physiol. Cell Physiol. 283, C811–C821 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Wong, A.S. & Gumbiner, B.M. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161, 1191–1203 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Katz, B.Z., Levenberg, S., Yamada, K.M. & Geiger, B. Modulation of cell-cell adherens junctions by surface clustering of the N-cadherin cytoplasmic tail. Exp. Cell Res. 243, 415–424 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Candidus, S., Bischoff, P., Becker, K.F. & Hofler, H. No evidence for mutations in the α- and β-catenin genes in human gastric and breast carcinomas. Cancer Res. 56, 49–52 (1996).

    CAS  PubMed  Google Scholar 

  69. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bafico, A., Liu, G., Goldin, L., Harris, V. & Aaronson, S.A. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6, 497–506 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, L. et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and β-catenin stabilization. Cancer Cell 15, 207–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aguilera, O. et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25, 4116–4121 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Caldwell, G.M. et al. The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res. 64, 883–888 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Kongkham, P.N. et al. The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 29, 3017–3024 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Nojima, M. et al. Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 26, 4699–4713 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Suzuki, H. et al. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer. Br. J. Cancer 98, 1147–1156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki, H. et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat. Genet. 36, 417–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Baylin, S.B. & Ohm, J.E. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6, 107–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Getz, G. et al. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Parsons, D.W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cahill, D.P. et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin. Cancer Res. 13, 2038–2045 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Janakiraman, M. et al. Genomic and biological characterization of exon 4 KRAS mutations in human cancer. Cancer Res. 70, 5901–5911 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl. Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baer, M., Nilsen, T.W., Costigan, C. & Altman, S. Structure and transcription of a human gene for H1 RNA, the RNA component of human RNase P. Nucleic Acids Res. 18, 97–103 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Hosack, D.A., Dennis, G. Jr., Sherman, B.T., Lane, H.C. & Lempicki, R.A. Identifying biological themes within lists of genes with EASE. Genome Biol. 4, R70 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Nickerson, D.A., Tobe, V.O. & Taylor, S.L. PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 25, 2745–2751 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, K. et al. PolyScan: an automatic indel and SNP detection approach to the analysis of human resequencing data. Genome Res. 17, 659–666 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Major, J.E. Genomic mutation consequence calculator. Bioinformatics 23, 3091–3092 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Heguy, A. Viale, K. Huberman, I. Dolgalev, S. Thomas, A. Kayserian and R. Spektor for excellent technical assistance. We are grateful to N. Sibinga (Albert Einstein College of Medicine) for providing an antibody to FAT1. This work was supported in part by US National Institutes of Health (NIH) grants NIH T32 CA009685 (L.G.T.M.) and NIH R01CA154767-01 (T.A.C.), the Memorial Sloan-Kettering Cancer Center, Department of Surgery Junior Faculty Award (L.G.T.M.), the Louis Gerstner Foundation (T.A.C.), the STARR Cancer Consortium (T.A.C.), The Geoffrey Beene Cancer Center (T.A.C.), the Doris Duke Charitable Foundation (T.A.C. and I.K.M.), the AVON Foundation (T.A.C.), the Flight Attendant Medical Research Institute (T.A.C.) and the Sontag Foundation (T.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

L.G.T.M. and T.A.C. designed the experiments. L.G.T.M., A.M.K., Y.G., D.R., L.A.W., Ş.T., V.E.B., S.E. and Y.Z. performed the experiments. L.G.T.M., Ş.T., L.P., K.K. and T.A.C. analyzed the data. B.S., I.G., P.P., Z.Z., E.V., D.S., L.L., T.C.C., P.S.M. and I.K.M. contributed new reagents and/or analytic tools. L.G.T.M. and T.A.C. wrote the manuscript.

Corresponding author

Correspondence to Timothy A Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–4 and 6–9 and Supplementary Note (PDF 2157 kb)

Supplementary Table 5

Genes differentially expressed after FAT1 knockdown across all 3 cell lines. (XLSX 214 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morris, L., Kaufman, A., Gong, Y. et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet 45, 253–261 (2013). https://doi.org/10.1038/ng.2538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2538

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer