Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

Abstract

Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ultrastructural abnormalities in Vici syndrome.
Figure 2: Accumulation of NBR1-positive puncta in the skeletal muscle of an individual with Vici syndrome.
Figure 3: Autophagy is blocked at a late stage in Vici syndrome.
Figure 4: Fusion of LC3-positive puncta with lysosomes in Vici syndrome.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Vici, C.D. et al. Agenesis of the corpus callosum, combined immunodeficiency, bilateral cataract, and hypopigmentation in two brothers. Am. J. Med. Genet. 29, 1–8 (1988).

    Article  Google Scholar 

  2. del Campo, M. et al. Albinism and agenesis of the corpus callosum with profound developmental delay: Vici syndrome, evidence for autosomal recessive inheritance. Am. J. Med. Genet. 85, 479–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Chiyonobu, T. et al. Sister and brother with Vici syndrome: agenesis of the corpus callosum, albinism, and recurrent infections. Am. J. Med. Genet. 109, 61–66 (2002).

    Article  PubMed  Google Scholar 

  4. Miyata, R. et al. Sibling cases of Vici syndrome: sleep abnormalities and complications of renal tubular acidosis. Am. J. Med. Genet. A. 143, 189–194 (2007).

    Article  Google Scholar 

  5. McClelland, V. et al. Vici syndrome associated with sensorineural hearing loss and evidence of neuromuscular involvement on muscle biopsy. Am. J. Med. Genet. A. 152A, 741–747 (2010).

    Article  PubMed  Google Scholar 

  6. Al-Owain, M. et al. Vici syndrome associated with unilateral lung hypoplasia and myopathy. Am. J. Med. Genet. A. 152A, 1849–1853 (2010).

    Article  PubMed  Google Scholar 

  7. Said, E., Soler, D. & Sewry, C. Vici syndrome—a rapidly progressive neurodegenerative disorder with hypopigmentation, immunodeficiency and myopathic changes on muscle biopsy. Am. J. Med. Genet. A. 158A, 440–444 (2012).

    Article  PubMed  Google Scholar 

  8. Finocchi, A. et al. Immunodeficiency in Vici syndrome: a heterogeneous phenotype. Am. J. Med. Genet. A. 158A, 434–439 (2012).

    Article  PubMed  Google Scholar 

  9. Rogers, C.R., Aufmuth, B. & Monesson, S. Vici Syndrome: a rare autosomal recessive syndrome with brain anomalies, cardiomyopathy, and severe intellectual disability. In Case Reports in Genetics Vol. 2011 1–4 (Hindawi Publishing Corporation, Cairo, NY, 2011).

  10. Tian, Y. et al. C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042–1055 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Halama, N., Grauling-Halama, S.A., Beder, A. & Jager, D. Comparative integromics on the breast cancer–associated gene KIAA1632: clues to a cancer antigen domain. Int. J. Oncol. 31, 205–210 (2007).

    CAS  PubMed  Google Scholar 

  12. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  PubMed  Google Scholar 

  13. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol. 8, 931–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Maiuri, M.C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O. & Klionsky, D.J. Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Klionsky, D.J. et al. A comprehensive glossary of autophagy-related molecules and processes. Autophagy 7, 1273–1294 (2010).

    Article  Google Scholar 

  19. Mizushima, N. & Klionsky, D.J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Di Bartolomeo, S., Nazio, F. & Cecconi, F. The role of autophagy during development in higher eukaryotes. Traffic 11, 1280–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Tra, T. et al. Autophagy in human embryonic stem cells. PLoS ONE 6, e27485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sandri, M. Autophagy in skeletal muscle. FEBS Lett. 584, 1411–1416 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Portbury, A.L., Willis, M.S. & Patterson, C. Tearin' up my heart: proteolysis in the cardiac sarcomere. J. Biol. Chem. 286, 9929–9934 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cao, D.J., Gillette, T.G. & Hill, J.A. Cardiomyocyte autophagy: remodeling, repairing, and reconstructing the heart. Curr. Hypertens. Rep. 11, 406–411 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, W. et al. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell. J. Cell Biol. 197, 27–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lange, S. et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 308, 1599–1603 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Waters, S., Marchbank, K., Solomon, E., Whitehouse, C. & Gautel, M. Interactions with LC3 and polyubiquitin chains link nbr1 to autophagic protein turnover. FEBS Lett. 583, 1846–1852 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Kirkin, V., Lamark, T., Johansen, T. & Dikic, I. NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets. Autophagy 5, 732–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Perera, S., Holt, M.R., Mankoo, B.S. & Gautel, M. Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover. Dev. Biol. 351, 46–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Selcen, D. et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann. Neurol. 65, 83–89 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Edström, L., Thornell, L.E., Albo, J., Landin, S. & Samuelsson, M. Myopathy with respiratory failure and typical myofibrillar lesions. J. Neurol. Sci. 96, 211–228 (1990).

    Article  PubMed  Google Scholar 

  32. Masiero, E. & Sandri, M. Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy 6, 307–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Taneike, M. et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 6, 600–606 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, Y. et al. The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains. Autophagy 3, 337–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Nishino, I. et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406, 906–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Fukuda, T. et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in Pompe disease. Mol. Ther. 14, 831–839 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Lünemann, J.D. et al. β-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann. Neurol. 61, 476–483 (2007).

    Article  PubMed  Google Scholar 

  40. Fujita, E. et al. Two endoplasmic reticulum–associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum. Mol. Genet. 16, 618–629 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Terman, A. & Brunk, U.T. Autophagy in cardiac myocyte homeostasis, aging, and pathology. Cardiovasc. Res. 68, 355–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619–624 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J. & Otsu, K. The role of autophagy in the heart. Cell Death Differ. 16, 31–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Williams, A. et al. Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76, 89–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Fimia, G.M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Schmid, D. & Munz, C. Innate and adaptive immunity through autophagy. Immunity 27, 11–21 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pua, H.H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y.W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ganesan, A.K. et al. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells. PLoS Genet. 4, e1000298 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  50. Li, K. & Stockwell, T.B. VariantClassifier: a hierarchical variant classifier for annotated genomes. BMC Res. Notes 3, 191 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heath, K.E., Day, I.N. & Humphries, S.E. Universal primer quantitative fluorescent multiplex (UPQFM) PCR: a method to detect major and minor rearrangements of the low density lipoprotein receptor gene. J. Med. Genet. 37, 272–280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Obermann, W.M. et al. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J. Cell Biol. 134, 1441–1453 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Harlow, E. & Lane, D. Antibodies, a Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1988).

Download references

Acknowledgements

We are grateful to the individuals with Vici syndrome and their families for their participation in this study. We would like to thank our colleagues at the Genomics Facility of the Comprehensive Biomedical Research Centre of Guy's and St Thomas' NHS Foundation Trust for their support. We would also like to thank the physicians D. Creel, R.O. Hoffman and L. Al-Gazali for their input and productive discussions. H.J. was supported by a grant from the Guy's and St Thomas' Charitable Foundation (grant 070404). M.G. and A.L.K. were supported by the Leducq Foundation Transatlantic Network Proteotoxicity (11 CVD 04) and the Medical Research Council of Great Britain (MR/J010456/1). M.G. holds the British Heart Foundation Chair of Molecular Cardiology. H.J. would like to dedicate this work to the memory of Rahul Ghosh, his first patient with Vici syndrome.

Author information

Authors and Affiliations

Authors

Contributions

T.C. designed the experiments, performed whole-exome capture, Sanger sequencing, cDNA sequencing and quantitative PCR (qPCR) analysis, analyzed data and wrote the manuscript. A.L.K. and B.B. performed immunostaining, confocal microscopy, cell culture studies and protein blotting. Z.U. performed qPCR analysis. F.S., M.A.S., S.Y. and S.A. prepared and performed whole-exome capture and analyzed the exome sequencing data. C.D.-V., E.B., V.M., M.A.-O., S.K., C.K., G.F.H., F.A.W., A.E.t.H., R.C.R., D.M., R.M., M.H., E.S., D.S., P.M.K., C.W., F.M.F., S.A.-K., J.H. and M.D.C. provided clinical data. S.B., I.B., H.-H.G. and C.A.S. provided and analyzed neuropathological data. S.M. and D.J. provided clinical data and oversaw genetic aspects of the research. M.G. analyzed data obtained from immunostaining, confocal microscopy, cell culture studies and protein blotting and wrote the manuscript. H.J. provided clinical and neuropathological data, analyzed exome and Sanger sequencing data, oversaw all aspects of the research and wrote the manuscript.

Corresponding authors

Correspondence to Mathias Gautel or Heinz Jungbluth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figures 1–8 (PDF 1667 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cullup, T., Kho, A., Dionisi-Vici, C. et al. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 45, 83–87 (2013). https://doi.org/10.1038/ng.2497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing