Mutations in GNAL cause primary torsion dystonia


Dystonia is a movement disorder characterized by repetitive twisting muscle contractions and postures1,2. Its molecular pathophysiology is poorly understood, in part owing to limited knowledge of the genetic basis of the disorder. Only three genes for primary torsion dystonia (PTD), TOR1A (DYT1)3, THAP1 (DYT6)4 and CIZ1 (ref. 5), have been identified. Using exome sequencing in two families with PTD, we identified a new causative gene, GNAL, with a nonsense mutation encoding p.Ser293* resulting in a premature stop codon in one family and a missense mutation encoding p.Val137Met in the other. Screening of GNAL in 39 families with PTD identified 6 additional new mutations in this gene. Impaired function of several of the mutants was shown by bioluminescence resonance energy transfer (BRET) assays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mutations identified in GNAL in individuals with PTD.
Figure 2: Effect of mutations on Gαolf coupling to D1R.

Accession codes


NCBI Reference Sequence


  1. 1

    Fahn, S. Concept and classification of dystonia. Adv. Neurol. 50, 1–8 (1988).

    CAS  PubMed  Google Scholar 

  2. 2

    Fahn, S., Bressman, S.B. & Marsden, C.D. Classification of dystonia. Adv. Neurol. 78, 1–10 (1998).

    CAS  PubMed  Google Scholar 

  3. 3

    Ozelius, L.J. et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat. Genet. 17, 40–48 (1997).

    CAS  PubMed  Google Scholar 

  4. 4

    Fuchs, T. et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat. Genet. 41, 286–288 (2009).

    CAS  PubMed  Google Scholar 

  5. 5

    Xiao, J. et al. Mutations in CIZ1 cause adult onset primary cervical dystonia. Ann. Neurol. 71, 458–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Albanese, A. et al. EFNS guidelines on diagnosis and treatment of primary dystonias. Eur. J. Neurol. 18, 5–18 (2011).

    CAS  PubMed  Google Scholar 

  7. 7

    Ozelius, L.J. & Bressman, S.B. Genetic and clinical features of primary torsion dystonia. Neurobiol. Dis. 42, 127–135 (2011).

    PubMed  Google Scholar 

  8. 8

    Risch, N.J. et al. Segregation analysis of idiopathic torsion dystonia in Ashkenazi Jews suggests autosomal dominant inheritance. Am. J. Hum. Genet. 46, 533–538 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Ahmad, F. et al. Evidence for locus heterogeneity in autosomal dominant torsion dystonia. Genomics 15, 9–12 (1993).

    CAS  PubMed  Google Scholar 

  10. 10

    Defazio, G., Livrea, P., Guanti, G., Lepore, V. & Ferrari, E. Genetic contribution to idiopathic adult-onset blepharospasm and cranial-cervical dystonia. Eur. Neurol. 33, 345–350 (1993).

    CAS  PubMed  Google Scholar 

  11. 11

    Bressman, S.B. et al. Idiopathic dystonia among Ashkenazi Jews: evidence for autosomal dominant inheritance. Ann. Neurol. 26, 612–620 (1989).

    CAS  PubMed  Google Scholar 

  12. 12

    Waddy, H.M., Fletcher, N.A., Harding, A.E. & Marsden, C.D. A genetic study of idiopathic focal dystonias. Ann. Neurol. 29, 320–324 (1991).

    CAS  PubMed  Google Scholar 

  13. 13

    Bressman, S.B. et al. A study of idiopathic torsion dystonia in a non-Jewish family: evidence for genetic heterogeneity. Neurology 44, 283–287 (1994).

    CAS  PubMed  Google Scholar 

  14. 14

    Bressman, S.B. et al. Mutations in THAP1 (DYT6) in early-onset dystonia: a genetic screening study. Lancet Neurol. 8, 441–446 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Saunders-Pullman, R. et al. Variant ataxia-telangiectasia presenting as primary-appearing dystonia in Canadian Mennonites. Neurology 78, 649–657 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Sheth, N. et al. Comprehensive splice-site analysis using comparative genomics. Nucleic Acids Res. 34, 3955–3967 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Blanchard, A. et al. DYT6 dystonia: review of the literature and creation of the UMD Locus-Specific Database (LSDB) for mutations in the THAP1 gene. Hum. Mutat. 32, 1213–1224 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Corradi, J.P. et al. Alternative transcripts and evidence of imprinting of GNAL on 18p11.2. Mol. Psychiatry 10, 1017–1025 (2005).

    CAS  PubMed  Google Scholar 

  20. 20

    Leube, B. et al. Idiopathic torsion dystonia: assignment of a gene to chromosome 18p in a German family with adult onset, autosomal dominant inheritance and purely focal distribution. Hum. Mol. Genet. 5, 1673–1677 (1996).

    CAS  PubMed  Google Scholar 

  21. 21

    Grimes, D.A. et al. A novel locus for inherited myoclonus-dystonia on 18p11. Neurology 59, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  22. 22

    Han, F., Racacho, L., Lang, A.E., Bulman, D.E. & Grimes, D.A. Refinement of the DYT15 locus in myoclonus dystonia. Mov. Disord. 22, 888–892 (2007).

    PubMed  Google Scholar 

  23. 23

    Tezzon, F., Zanoni, T., Passarin, M.G. & Ferrari, G. Dystonia in a patient with deletion of 18p. Ital. J. Neurol. Sci. 19, 90–93 (1998).

    CAS  PubMed  Google Scholar 

  24. 24

    Klein, C. et al. Genetic analysis of three patients with an 18p– syndrome and dystonia. Neurology 52, 649–651 (1999).

    CAS  PubMed  Google Scholar 

  25. 25

    Nasir, J. et al. Unbalanced whole arm translocation resulting in loss of 18p in dystonia. Mov. Disord. 21, 859–863 (2006).

    PubMed  Google Scholar 

  26. 26

    Postma, A.G., Verschuuren-Bemelmans, C.C., Kok, K. & van Laar, T. Characteristics of dystonia in the 18p deletion syndrome, including a new case. Clin. Neurol. Neurosurg. 111, 880–882 (2009).

    PubMed  Google Scholar 

  27. 27

    Graziadio, C. et al. Dystonia, autoimmune disease and cerebral white matter abnormalities in a patient with 18p deletion. Arq. Neuropsiquiatr. 67, 689–691 (2009).

    PubMed  Google Scholar 

  28. 28

    Kowarik, M.C. et al. Myoclonus-dystonia in 18p deletion syndrome. Mov. Disord. 26, 560–561 (2011).

    PubMed  Google Scholar 

  29. 29

    Jones, D.T. & Reed, R.R. Golf: an olfactory neuron specific–G protein involved in odorant signal transduction. Science 244, 790–795 (1989).

    CAS  PubMed  Google Scholar 

  30. 30

    Oldham, W.M. & Hamm, H.E. Heterotrimeric G protein activation by G-protein–coupled receptors. Nat. Rev. Mol. Cell Biol. 9, 60–71 (2008).

    CAS  Google Scholar 

  31. 31

    Drinnan, S.L., Hope, B.T., Snutch, T.P. & Vincent, S.R. Golf in the basal ganglia. Mol. Cell. Neurosci. 2, 66–70 (1991).

    CAS  PubMed  Google Scholar 

  32. 32

    Hervé, D. et al. Golf and Gs in rat basal ganglia: possible involvement of Golf in the coupling of dopamine D1 receptor with adenylyl cyclase. J. Neurosci. 13, 2237–2248 (1993).

    PubMed  Google Scholar 

  33. 33

    Kull, B., Svenningsson, P. & Fredholm, B.B. Adenosine A2A receptors are colocalized with and activate Golf in rat striatum. Mol. Pharmacol. 58, 771–777 (2000).

    CAS  PubMed  Google Scholar 

  34. 34

    Hervé, D. et al. Gαolf levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J. Neurosci. 21, 4390–4399 (2001).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Corvol, J.C., Studler, J.M., Schonn, J.S., Girault, J.A. & Herve, D. Gαolf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J. Neurochem. 76, 1585–1588 (2001).

    CAS  PubMed  Google Scholar 

  36. 36

    Hervé, D. Identification of a specific assembly of the G protein Golf as a critical and regulated module of dopamine and adenosine-activated cAMP pathways in the striatum. Front. Neuroanat. 5, 48 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Sunahara, R.K., Tesmer, J.J., Gilman, A.G. & Sprang, S.R. Crystal structure of the adenylyl cyclase activator Gsα . Science 278, 1943–1947 (1997).

    CAS  PubMed  Google Scholar 

  38. 38

    Berardelli, A. et al. The pathophysiology of primary dystonia. Brain 121, 1195–1212 (1998).

    PubMed  Google Scholar 

  39. 39

    Breakefield, X.O. et al. The pathophysiological basis of dystonias. Nat. Rev. Neurosci. 9, 222–234 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Neychev, V.K., Gross, R.E., Lehericy, S., Hess, E.J. & Jinnah, H.A. The functional neuroanatomy of dystonia. Neurobiol. Dis. 42, 185–201 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. 41

    Page, M.E. et al. Cell-autonomous alteration of dopaminergic transmission by wild type and mutant (ΔE) TorsinA in transgenic mice. Neurobiol. Dis. 39, 318–326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Sciamanna, G. et al. Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia. Neurobiol. Dis. 34, 133–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Bonsi, P. et al. Centrality of striatal cholinergic transmission in basal ganglia function. Front. Neuroanat. 5, 6 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Corvol, J.C. et al. Quantitative changes in Gαolf protein levels, but not D1 receptor, alter specifically acute responses to psychostimulants. Neuropsychopharmacology 32, 1109–1121 (2007).

    CAS  PubMed  Google Scholar 

  45. 45

    Belluscio, L., Gold, G.H., Nemes, A. & Axel, R. Mice deficient in Golf are anosmic. Neuron 20, 69–81 (1998).

    CAS  PubMed  Google Scholar 

  46. 46

    Zhuang, X., Belluscio, L. & Hen, R. Golfα mediates dopamine D1 receptor signaling. J. Neurosci. 20, RC91 (2000).

    CAS  PubMed  Google Scholar 

  47. 47

    Corvol, J.C. et al. Persistent increase in olfactory type G-protein α subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J. Neurosci. 24, 7007–7014 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Alcacer, C. et al. Gαolf mutation allows parsing the role of cAMP-dependent and extracellular signal–regulated kinase–dependent signaling in L-3,4-dihydroxyphenylalanine–induced dyskinesia. J. Neurosci. 32, 5900–5910 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Del Sorbo, F. & Albanese, A. Levodopa-induced dyskinesias and their management. J. Neurol. 255 (suppl. 4), 32–41 (2008).

    CAS  PubMed  Google Scholar 

  50. 50

    Balcioglu, A. et al. Dopamine release is impaired in a mouse model of DYT1 dystonia. J. Neurochem. 102, 783–788 (2007).

    CAS  PubMed  Google Scholar 

  51. 51

    Sako, W., Morigaki, R., Nagahiro, S., Kaji, R. & Goto, S. Olfactory type G-protein α subunit in striosome-matrix dopamine systems in adult mice. Neuroscience 170, 497–502 (2010).

    CAS  PubMed  Google Scholar 

  52. 52

    Crittenden, J.R. & Graybiel, A.M. Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 5, 59 (2011).

    PubMed  PubMed Central  Google Scholar 

  53. 53

    Kamnasaran, D. Genetic analysis of psychiatric disorders associated with human chromosome 18. Clin. Invest. Med. 26, 285–302 (2003).

    CAS  PubMed  Google Scholar 

  54. 54

    Laurin, N. et al. Investigation of the G protein subunit Gαolf gene (GNAL) in attention deficit/hyperactivity disorder. J. Psychiatr. Res. 42, 117–124 (2008).

    PubMed  Google Scholar 

  55. 55

    DasBanerjee, T. et al. A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 147B, 1554–1563 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Ozelius, L.J., Lubarr, N. & Bressman, S.B. Milestones in dystonia. Mov. Disord. 26, 1106–1126 (2011).

    PubMed  Google Scholar 

  57. 57

    Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Jarman, P.R. et al. Primary torsion dystonia: the search for genes is not over. J. Neurol. Neurosurg. Psychiatry 67, 395–397 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Factor, S.A. Cervical dystonia in twins. Mov. Disord. 17, 846–847 (2002).

    PubMed  Google Scholar 

  60. 60

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Dayem Ullah, A.Z., Lemoine, N.R. & Chelala, C. SNPnexus: a web server for functional annotation of novel and publicly known genetic variants (2012 update). Nucleic Acids Res. 40, W65–W70 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386 (2000).

    CAS  Google Scholar 

  64. 64

    Hollins, B., Kuravi, S., Digby, G.J. & Lambert, N.A. The C-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell. Signal. 21, 1015–1021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Gopalakrishna, K.N. et al. Interaction of transducin with uncoordinated 119 protein (UNC119): implications for the model of transducin trafficking in rod photoreceptors. J. Biol. Chem. 286, 28954–28962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Niznik, H.B. et al. Dopamine D1 receptors characterized with [3H]SCH 23390. Solubilization of a guanine nucleotide–sensitive form of the receptor. J. Biol. Chem. 261, 8397–8406 (1986).

    CAS  PubMed  Google Scholar 

Download references


We wish to thank all individuals with dystonia and their family members who participated in this study. We are indebted to the following physicians for referring families with dystonia included in this manuscript: S. Reich, J. Hammerstadt, D. Hobson, D. Truong, F. Danisi, M. Hutchinson, S. O'Riordan, T. Lynch and J. Rogers. We would also like to thank the following physicians who examined study subjects during their movement disorder fellowships: R. Tabamo, E. Chai, K. Blatt, P. Kavanagh, P. Kapoor and G. Petzinger. We thank R. Sachidanandam for the bioinformatics analysis related to the splice-site mutation; H. Lederman for technical help; N.A. Lambert (Georgia Health Sciences University) for sharing Venus155-239-Gβ1 and Venus1-155-Gγ2; and B. Malnic (Universidade de São Paulo) for the gift of the Ric-8B construct. This work was supported by research grants from the Dystonia Medical Research Foundation (T.F.), the Bachmann-Strauss Dystonia and Parkinson Foundation (L.J.O.), the Lockwood Family Foundation (N.S. and L.J.O.), the National Institute of Neurological Disorders and Stroke (NS26656, S.B.B., R.S.-P. and L.J.O.; NS037409, N.S. and L.J.O.; K02-NS073836, R.S.-P.) the National Institute on Drug Abuse (DA021743 and DA026405, K.A.M.) and Agence Nationale de la Recherche (ANR09-MNPS-014, D.H.). The authors would like to thank the NHLBI GO Exome Sequencing Project and its ongoing studies, which produced and provided exome variant calls for comparison, including the Lung GO Sequencing Project (HL-102923), the Women's Health Initiative (WHI) Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart GO Sequencing Project (HL-103010).

Author information




T.F. developed the computational analysis pipeline, analyzed the next-generation and Sanger sequencing data and wrote the manuscript. S.W. and E.A. performed molecular experiments. N.S. provided funding for the linkage studies. D.H. provided the antibody to GNAL. D.R. collected samples and provided clinical information for the subjects. M.S.L. and R.S.-P. performed the statistical analysis related to phenotype. S.F., A.E.L., T.-W.L., R.M.T., R.S.-P. and S.B.B. examined subjects. S.B.B. and R.S.-P. supervised the acquisition of clinical data and blood samples and assigned final clinical status. K.A.M. and M.E.E. formulated the functional assay. I.M. performed the assays of Gαolf function. K.A.M. and I.M. analyzed and interpreted the functional data. L.J.O. designed and supervised the genetic studies. T.F., I.M., A.E.L., D.H., D.R., R.S.-P., M.S.L., N.S., K.A.M., M.E.E., S.B.B. and L.J.O. edited the manuscript.

Corresponding author

Correspondence to Laurie J Ozelius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Tables 1–5 and Supplementary Note (PDF 372 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuchs, T., Saunders-Pullman, R., Masuho, I. et al. Mutations in GNAL cause primary torsion dystonia. Nat Genet 45, 88–92 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing