Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels

Abstract

Maize kernel oil is a valuable source of nutrition. Here we extensively examine the genetic architecture of maize oil biosynthesis in a genome-wide association study using 1.03 million SNPs characterized in 368 maize inbred lines, including 'high-oil' lines. We identified 74 loci significantly associated with kernel oil concentration and fatty acid composition (P < 1.8 × 10−6), which we subsequently examined using expression quantitative trait loci (QTL) mapping, linkage mapping and coexpression analysis. More than half of the identified loci localized in mapped QTL intervals, and one-third of the candidate genes were annotated as enzymes in the oil metabolic pathway. The 26 loci associated with oil concentration could explain up to 83% of the phenotypic variation using a simple additive model. Our results provide insights into the genetic basis of oil biosynthesis in maize kernels and may facilitate marker-based breeding for oil quantity and quality.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Manhattan and quantile-quantile plots resulting from the GWAS results for oil concentration in maize kernels.
Figure 2
Figure 3: Associations and genomic locations of known and new loci associated with oil concentration and composition.

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. 1

    Thelen, J.J. & Ohlrogge, J.B. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4, 12–21 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Graham, I.A. & Eastmond, P.J. Pathways of straight and branched chain fatty acid catabolism in higher plants. Prog. Lipid Res. 41, 156–181 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Beisson, F. et al. Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol. 132, 681–697 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Baud, S. & Lepiniec, L. Physiological and developmental regulation of seed oil production. Prog. Lipid Res. 49, 235–249 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Dudley, J.W. & Lambert, R.J. 100 generation of selection for oil and protein in corn. Plant Breed. Rev. 24, 79–110 (2004).

    Google Scholar 

  6. 6

    Lambert, R.J., Alexander, D.E. & Mejaya, I.J. Single kernel selection for increased grain oil in maize synthetics and high-oil hybrid development. Plant Breed. Rev. 24, 153–175 (2004).

    CAS  Google Scholar 

  7. 7

    Song, T.M. & Chen, S.J. Long term selection for oil concentration in five maize populations. Maydica 49, 9–14 (2004).

    Google Scholar 

  8. 8

    Laurie, C.C. et al. The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168, 2141–2155 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Yang, X.H. et al. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theor. Appl. Genet. 120, 665–678 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Cook, J.P. et al. Genetic Architecture of Maize Kernel Composition in the Nested Association Mapping and Inbred Association Panels. Plant Physiol. 158, 824–834 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Yan, J.B., Warburton, M. & Crouch, J. Association mapping for enhancing maize genetic improvement. Crop Sci. 51, 433–449 (2011).

    Article  Google Scholar 

  12. 12

    Myles, S. et al. Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21, 2194–2202 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13

    Majewski, J. & Pastinen, T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet. 27, 72–79 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Ganal, M.W. et al. A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6, e28334 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Yang, X.H. et al. Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol. Breed. 28, 511–526 (2011).

    Article  Google Scholar 

  16. 16

    Yu, J.M. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Zhang, Z.W. et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Buckler, E.S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Tian, F. et al. Genome-wide association study of maize identifies genes affecting leaf architecture. Nat. Genet. 43, 159–162 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20

    Kump, K.L. et al. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 43, 163–168 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    Poland, J.A., Bradbury, P.J., Buckler, E.S. & Nelson, R.J. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc. Natl. Acad. Sci. USA 108, 6893–6898 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Beló, A. et al. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol. Genet. Genomics 279, 1–10 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  23. 23

    Zheng, P.Z. et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat. Genet. 40, 367–372 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Li, L. et al. An 11-bp insertion in Zea mays fatb reduces the palmitic acid content of fatty acids in maize grain. PLoS ONE 6, e24699 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Hurley, J.H. & Misra, S. Signaling and subcellular targeting by membrane-binding domains. Annu. Rev. Biophys. Biomol. Struct. 29, 49–79 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Yang, X.H. et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor. Appl. Genet. 121, 417–431 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Shintani, D.K. & Ohlrogge, J.B. The characterization of a mitochondrial acyl carrier protein isoform isolated from Arabidopsis thaliana. Plant Physiol. 104, 1221–1229 (1994).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28

    Sanchez, J., Agrawal, V.P. & Stumpf, P.K. Structure, Function and Metabolism of Plant Lipids (eds. Siegenthaler, P.A. & Eichenberger, W.) (Elsevier, 1984).

  29. 29

    Branen, J.K., Chiou, T.J. & Engeseth, N.J. Overexpression of acyl carrier protein-1 alters fatty acid composition of leaf tissue in Arabidopsis. Plant Physiol. 127, 222–229 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Li-Beisson, Y.H. et al. Acyl-lipid metabolism (eds. Somerville, C.R. & Meyerowitz, E.M.) The Arabidopsis Book, vol. 1 (American Society of Plant Biologists, 2010).

  31. 31

    Cernac, A. & Benning, C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis. Plant J. 40, 575–585 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Shen, B. et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize. Plant Physiol. 153, 980–987 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33

    Pouvreau, B. et al. Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol. 156, 674–686 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34

    Gore, M.A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Huang, X.H. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Zhang, Z.W., Buckler, E.S., Casstevens, T.M. & Bradbury, P.J. Software engineering the mixed model for genome-wide associated studies on large samples. Brief. Bioinform. 10, 664–675 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  38. 38

    Platt, A., Vilhjálmsson, B.J. & Nordborg, M. Conditions under which genome-wide association studies will be positively misleading. Genetics 186, 1045–1052 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39

    McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984).

    CAS  Article  Google Scholar 

  40. 40

    Harjes, C.E. et al. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330–333 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Yan, J.B. et al. Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 42, 322–327 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42

    Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43

    Zhou, L.L., Zhang, J.Y., Yan, J.B. & Song, R.T. Two transposable element insertions are causative mutations for the major domestication gene teosinte branched 1 in modern maize. Cell Res. 21, 1267–1270 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, C.E. & Hannah, L.C. The maize genome contains a helitron insertion. Plant Cell 15, 381–391 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45

    Gupta, S. et al. A novel class of Helitron- related transposable elements in maize contain portions of multiple pseudogenes. Plant Mol. Biol. 57, 115–127 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Moose, S.P., Dudley, J.W. & Rocheford, T.R. Maize selection passes the century mark: a unique resource for 21st century genomics. Trends Plant Sci. 9, 358–364 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47

    Chai, Y.C. et al. Validation of DGAT1–2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol. Breed. 29, 939–949 (2011).

    Article  CAS  Google Scholar 

  48. 48

    Song, X.F., Song, T.M., Dai, J.R. & Rocheford, T.R. QTL mapping of kernel oil concentration with high–oil maize by SSR markers. Maydica 49, 41–48 (2004).

    Google Scholar 

  49. 49

    Mangolin, C.A. et al. Mapping QTLs for kernel oil content in a tropical maize population. Euphytica 137, 251–259 (2004).

    CAS  Article  Google Scholar 

  50. 50

    Zhang, J. et al. Mapping quantitative trait loci for oil, starch, and protein concentrations in grain with high–oil maize by SSR markers. Euphytica 162, 335–344 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Newman, J.W., Morisseau, C. & Hammock, B.D. Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog. Lipid Res. 44, 1–51 (2004).

    Article  CAS  Google Scholar 

  52. 52

    Nawrath, C. The biopolymers cutin and suberin, vol. 2 (eds. Somerville, C.R. & Meyerowitz, E.M.) The Arabidopsis Book (American Society of Plant Biologists, 2010).

  53. 53

    Safford, R. et al. Plastid–localised seed acyl–carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family. FEBS J. 174, 287–295 (1988).

    CAS  Google Scholar 

  54. 54

    Evans, D.E., Taylor, P.E., Singh, M.B. & Knox, R.B. The interrelationship between the accumulation of lipids, protein and the level of acyl carrier protein during the development of Brassica napus L. pollen. Planta. 186, 343–354 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Kurz, E.U. & Lees-Miller, S.P. DNA damage–induced activation of ATM and ATM–dependent signaling pathways. DNA Repair 3, 889–900 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56

    Shockey, J.M., Fulda, M.S. & Browse, J.A. Arabidopsis contains nine long–chain acyl–coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol. 129, 1710–1722 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Fulda, M., Shockey, J., Werber, M., Wolter, F.P. & Heinz, E. Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid beta-oxidation. Plant J. 32, 93–103 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Hellyer, S.A., Chandler, I.C. & Bosley, J.A. Can the fatty acid selectivity of plant lipases be predicted from the composition of the seed triglyceride? Biochim. Biophys. Acta 1440, 215–224 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Rosnitschek, I. & Theimer, R.R. Properties of a membrane–bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons. Planta 148, 193–198 (1980).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Paloccia, C. et al. Lipolytic isoenzymes from Euphorbia latex. Plant Sci. 165, 577–582 (2003).

    Article  CAS  Google Scholar 

  61. 61

    Benveniste, I. et al. CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450–dependent fatty acid omega–hydroxylase. Biochem. Bioph. Res. Co. 243, 688–693 (1998).

    CAS  Article  Google Scholar 

  62. 62

    Song, W.C., Funk, C.D. & Brash, A.R. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc. Natl. Acad. Sci. USA 90, 8519–8523 (1993).

    CAS  Article  Google Scholar 

  63. 63

    Murata, N. & Tasaka, Y. Glycerol-3-phosphate acyltransferase in plants. Biochim. Biophys. Acta 1348, 10–16 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64

    Yang, W.L. et al. A distinct type of glycerol–3–phosphate acyltransferase with sn–2 preference and phosphatase activity producing 2–monoacylglycerol. Proc. Natl. Acad. Sci. USA 107, 12040–12045 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65

    Tamada, T. et al. Substrate recognition and selectivity of plant glycerol-3-phosphate acyltransferases (GPATs) from Cucurbita moscata and Spinacea oleracea. Acta Crystallogr. D 60, 13–21 (2004).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  66. 66

    Oakes, J. et al. Expression of fungal diacylglycerol acyltransferase2 Genes to increase kernel oil in maize. Plant Physiol. 155, 1146–1157 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67

    Bouvier-Navé, P., Benveniste, P., Oelkers, P., Sturley, S.L. & Schaller, H. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA: diacylglycerol acyltransferase. FEBS J. 267, 85–96 (2011).

    Google Scholar 

  68. 68

    Lung, S.C. & Weselake, R.J. Diacylglycerol acyltransferase: a key mediator of plant triacylglycerol synthesis. Lipids 41, 1073–1088 (2005).

    Article  Google Scholar 

  69. 69

    Xu, J.Y. et al. Cloning and characterization of an acyl–CoA–dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site–directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnol. J. 6, 799–818 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70

    Nickel, W., Brugger, B. & Wieland, F.T. Protein and lipid sorting between the endoplasmic reticulum and the Golgi complex. Semin. Cell Dev. Biol. 9, 493–501 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Mikkilineni, V. & Rocheford, T.R. Sequence variation and genomic organization of fatty acid desaturase–2 (fad2) and fatty acid desaturase–6 (fad6) cDNAs in maize. Theor. Appl. Genet. 106, 1326–1332 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Wassom, J.J., Mikkelineni, V., Bohn, M.O. & Rocheford, T.R. QTL for fatty acid composition of maize kernel oil in Illinois High Oil x B73 backcross–derived lines. Crop Sci. 48, 69–78 (2007).

    Article  CAS  Google Scholar 

  73. 73

    Okuley, J. et al. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6, 147–158 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Dyer, J.M. & Mullen, R.T. Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett. 494, 44–47 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Li, Q. et al. Genome-wide association study identifies three independent polymorphisms for α-tocopherol content in maize kernels. PLoS ONE 7, e36807 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76

    Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77

    Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS  Google Scholar 

  78. 78

    Bradbury, P.J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Yan, J.B. et al. High-throughput SNP genotyping with the GoldenGate assay in maize. Mol. Breed. 25, 441–451 (2010).

    CAS  Article  Google Scholar 

  80. 80

    Lincoln, S.E., Daly, M.J. & Lander, E.S. Construction genetic maps with MAPMAKER/EXP 3.0. Whitehead Institute Technical Report, 3rd edn (Whitehead Institute, 1992).

  81. 81

    Zeng, Z.B. Precision mapping of quantitative trait loci. Genetics 136, 1457–1468 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Wang, S., Basten, C.J. & Zeng, Z. Windows QTL Cartographer 2.5. (North Carolina State University, Raleigh, North Carolina, USA, 2005).

  83. 83

    Ihaka, R. & Gentleman, R.R. A language for data analysis and graphics. J. Comput. Graph. Statist. 5, 299–314 (1996).

    Google Scholar 

  84. 84

    Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We appreciated the helpful comments on the manuscript from A. Rafalski, J. Dudley, T. Setter and B. Shen. This research was supported by the National Hi-Tech Research and Development Program of China (2012AA10A307), the National Natural Science Foundation of China (31101156, 31123009), the National Basic Research Program of China (2009CB118404), the Ministry of Agriculture of China (2011ZX08009-001) and the National Gene Bank Project of China.

Author information

Affiliations

Authors

Contributions

J.Y., X.Y., J. Li and G.W. designed and supervised this study. H.L., W.W., Y.H., Y. Chai, P.Z. and X.H. performed the experiments. H.L., X.Y., W.W., Z.P., J.F., T.G., N.Y., Y.L., J. Liu, Y. Cheng and J.Y. analyzed data. J.W. and J.Z. contributed new regents. J.Y., H.L. and M.L.W. prepared the manuscript, and all the authors critically read and approved the manuscript.

Corresponding authors

Correspondence to Guoying Wang or Jiansheng Li or Jianbing Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1–11 (PDF 5365 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, H., Peng, Z., Yang, X. et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45, 43–50 (2013). https://doi.org/10.1038/ng.2484

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing