Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The genetic landscape of mutations in Burkitt lymphoma

Abstract

Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from whole-genome sequencing of a Burkitt lymphoma tumor and germline DNA.
Figure 2: Exome sequencing in Burkitt lymphoma.
Figure 3: Patterns of exonic mutations in Burkitt lymphoma compared to DLBCL.
Figure 4: Recurrent ID3 mutations in Burkitt lymphomas.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Dave, S.S. et al. Molecular diagnosis of Burkitt's lymphoma. N. Engl. J. Med. 354, 2431–2442 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Schiffman, J.D. et al. Genome wide copy number analysis of paediatric Burkitt lymphoma using formalin-fixed tissues reveals a subset with gain of chromosome 13q and corresponding miRNA over expression. Br. J. Haematol. 155, 477–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hummel, M. et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 354, 2419–2430 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Swerdlow, S.H. et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues 4th edn. (IARC Press, Lyon, France, 2008).

  5. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pleasance, E.D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 463, 184–190 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yi, X. et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Y. et al. Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants. Nat. Genet. 42, 969–972 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siva, N. 1000 Genomes project. Nat. Biotechnol. 26, 256 (2008).

    Article  PubMed  Google Scholar 

  13. Futreal, P.A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lohr, J.G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA 109, 3879–3884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ngo, V.N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Wright, G. et al. A gene expression–based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA 100, 9991–9996 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dalla-Favera, R., Martinotti, S., Gallo, R.C., Erikson, J. & Croce, C.M. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219, 963–967 (1983).

    Article  CAS  PubMed  Google Scholar 

  21. Little, C.D., Nau, M.M., Carney, D.N., Gazdar, A.F. & Minna, J.D. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306, 194–196 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Münzel, P., Marx, D., Kochel, H., Schauer, A. & Bock, K.W. Genomic alterations of the c-myc protooncogene in relation to the overexpression of c-erbB2 and Ki-67 in human breast and cervix carcinomas. J. Cancer Res. Clin. Oncol. 117, 603–607 (1991).

    Article  PubMed  Google Scholar 

  23. Wang, Z.R., Liu, W., Smith, S.T., Parrish, R.S. & Young, S.R. c-myc and chromosome 8 centromere studies of ovarian cancer by interphase FISH. Exp. Mol. Pathol. 66, 140–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Augenlicht, L.H. et al. Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: a frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial. Cancer Res. 57, 1769–1775 (1997).

    CAS  PubMed  Google Scholar 

  25. Kee, B.L. E and ID proteins branch out. Nat. Rev. Immunol. 9, 175–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Morin, R.D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jima, D.D. et al. Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. Blood 116, e118–e127 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L. & Rice, P.M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38, 1767–1771 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parmigiani, G. et al. Design and analysis issues in genome-wide somatic mutation studies of cancer. Genomics 93, 17–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge, D. et al. SVA: software for annotating and visualizing sequenced human genomes. Bioinformatics 27, 1998–2000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol. 8, R232 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  PubMed  Google Scholar 

  38. Pruitt, K.D. et al. The consensus coding sequence (CCDS) project: identifying a common protein-coding gene set for the human and mouse genomes. Genome Res. 19, 1316–1323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank S. Sunay and the Georgia Cancer Coalition for support in sample collection. A.B.M. was supported by the Hertz Foundation. This work was supported through grants R21CA1561686 and R01CA136895 from the National Cancer Institute (S.S.D.). S.S.D. was also supported by the American Cancer Society. We gratefully acknowledge the generous support of C. Stiefel and D. Stiefel.

Author information

Authors and Affiliations

Authors

Contributions

C.L., R.M., K.L.R., C.H.D., W.W.L.C., G.S., P.L.L., D.A.R., A.S.L., L.B.-M., K.P.M., C.R.F., K.N.N., A.M.E., A.C., L.I.G., M.B.C., J.I.G., E.D.H., J.Z., G.L., A.G., M.M., S.L. and S.S.D. performed research and edited the manuscript. C.L., J.Z., A.B.M., D.J., Z.S., V.G., A.B., D.B.D. and S.S.D. analyzed data. C.L. and S.S.D. wrote the manuscript.

Corresponding author

Correspondence to Sandeep S Dave.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note and Supplementary Figures 1–10 (PDF 4090 kb)

Supplementary Table 1

Burkitt lymphoma whole genome sequencing variants (XLS 2765 kb)

Supplementary Table 2

Sanger sequence validation (XLS 66 kb)

Supplementary Table 3

Recurrently mutated genes in Burkitt lymphoma (XLS 50 kb)

Supplementary Table 4

Individual variants found in Burkitt lymphoma (XLS 217 kb)

Supplementary Table 5

Patient data (XLS 42 kb)

Supplementary Table 6

Primer sequences (XLS 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, C., Sun, Z., Jima, D. et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 44, 1321–1325 (2012). https://doi.org/10.1038/ng.2468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2468

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer