Subjects

Abstract

Congenital central hypothyroidism occurs either in isolation or in conjunction with other pituitary hormone deficits. Using exome and candidate gene sequencing, we identified 8 distinct mutations and 2 deletions in IGSF1 in males from 11 unrelated families with central hypothyroidism, testicular enlargement and variably low prolactin concentrations. IGSF1 is a membrane glycoprotein that is highly expressed in the anterior pituitary gland, and the identified mutations impair its trafficking to the cell surface in heterologous cells. Igsf1-deficient male mice show diminished pituitary and serum thyroid-stimulating hormone (TSH) concentrations, reduced pituitary thyrotropin-releasing hormone (TRH) receptor expression, decreased triiodothyronine concentrations and increased body mass. Collectively, our observations delineate a new X-linked disorder in which loss-of-function mutations in IGSF1 cause central hypothyroidism, likely secondary to an associated impairment in pituitary TRH signaling.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

NCBI Reference Sequence

References

  1. 1.

    , , & Reference intervals from birth to adulthood for serum thyroxine (T4), triiodothyronine (T3), free T3, free T4, thyroxine binding globulin (TBG) and thyrotropin (TSH). Clin. Chem. Lab. Med. 39, 973–979 (2001).

  2. 2.

    et al. Is the thyrotropin-releasing hormone test necessary in the diagnosis of central hypothyroidism in children. J. Clin. Endocrinol. Metab. 88, 5696–5703 (2003).

  3. 3.

    , & Role of the thyrotropin-releasing hormone stimulation test in diagnosis of congenital central hypothyroidism in infants. J. Clin. Endocrinol. Metab. 93, 410–419 (2008).

  4. 4.

    et al. Plasma thyrotropin response to thyrotropin-releasing hormone in patients with pituitary and hypothalamic disorders. J. Clin. Endocrinol. Metab. 37, 595–601 (1973).

  5. 5.

    , & An evaluation of the thyrotrophin-releasing hormone stimulation test in paediatric clinical practice. Horm. Res. 69, 53–59 (2008).

  6. 6.

    et al. Evidence for the secretion of thyrotropin with enhanced bioactivity in syndromes of thyroid hormone resistance. J. Clin. Endocrinol. Metab. 78, 1034–1039 (1994).

  7. 7.

    , , , & Circulating thyrotropin bioactivity in sporadic central hypothyroidism. J. Clin. Endocrinol. Metab. 85, 3631–3635 (2000).

  8. 8.

    et al. Normative values for testicular volume measured by ultrasonography in a normal population from infancy to adolescence. Horm. Res. Paediatr. 76, 56–64 (2011).

  9. 9.

    , & Evaluation of disordered puberty. in Brook′s Clinical Pediatric Endocrinology (eds. Brook, C.G.D., Clayton, P.E. & Brown, R.S.), 213–238 (Wiley-Blackwell, Oxford, 2009).

  10. 10.

    et al. Pubertal development in The Netherlands 1965–1997. Pediatr. Res. 50, 479–486 (2001).

  11. 11.

    , , , & Cloning and expression of an immunoglobulin superfamily gene (IGSF1) in Xq25. Genomics 48, 157–162 (1998).

  12. 12.

    , , , & Identification and genomic organization of a gene coding for a new member of the cell adhesion molecule family mapping to Xq25. Gene 214, 1–6 (1998).

  13. 13.

    , , , & An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin domain protein. J. Biol. Chem. 283, 36369–36376 (2008).

  14. 14.

    et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

  15. 15.

    et al. Structure and expression of a membrane component of the inhibin receptor system. Endocrinology 141, 2600–2607 (2000).

  16. 16.

    & Inhibin binding protein in rats: alternative transcripts and regulation in the pituitary across the estrous cycle. Mol. Endocrinol. 15, 654–667 (2001).

  17. 17.

    , , , & Normal reproductive function in InhBP/p120-deficient mice. Mol. Cell. Biol. 23, 4882–4891 (2003).

  18. 18.

    & Modulation of activin signal transduction by inhibin B and inhibin-binding protein (INhBP). Mol. Endocrinol. 15, 668–679 (2001).

  19. 19.

    , , & Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors. Mol. Cell. Endocrinol. 196, 79–93 (2002).

  20. 20.

    et al. The beneficial effect of L-thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J. Clin. Endocrinol. Metab. 92, 1715–1723 (2007).

  21. 21.

    et al. Impact of subclinical thyroid disorders on coronary heart disease, cardiovascular and all-cause mortality: a meta-analysis. Int. J. Cardiol. 125, 41–48 (2008).

  22. 22.

    , , , & Diagnosis of subclinical central hypothyroidism in patients with hypothalamic-pituitary disease by Doppler echocardiography. Eur. J. Endocrinol. 166, 631–640 (2012).

  23. 23.

    et al. Continuing positive secular growth change in The Netherlands 1955–1997. Pediatr. Res. 47, 316–323 (2000).

  24. 24.

    et al. Cross sectional stature and weight reference curves for the UK, 1990. Arch. Dis. Child. 73, 17–24 (1995).

  25. 25.

    et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J. Endocrinol. Invest. 29, 581–593 (2006).

  26. 26.

    & Centiles of body mass index for Dutch children aged 0–20 years in 1980—a baseline to assess recent trends in obesity. Ann. Hum. Biol. 26, 303–308 (1999).

  27. 27.

    , & 17-hydroxyprogesterone, androstenedione, and testosterone in normal children and in prepubertal patients with congenital adrenal hyperplasia. Eur. J. Pediatr. 133, 259–267 (1980).

  28. 28.

    & Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  29. 29.

    et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  30. 30.

    & Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

  31. 31.

    et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  32. 32.

    Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone β subunit in mouse gonadotrope cells. Mol. Endocrinol. 18, 606–623 (2004).

  33. 33.

    , & Pituitary homeobox 1 (Ptx1) is differentially expressed during pituitary development. Endocrinology 140, 1416–1422 (1999).

  34. 34.

    et al. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl. Acad. Sci. USA 108, 11482–11487 (2011).

  35. 35.

    , , , & Testicular failure in boys with Prader-Willi syndrome: longitudinal studies of reproductive hormones. J. Clin. Endocrinol. Metab. 97, E452–E459 (2012).

  36. 36.

    et al. Variants in the ACVR1 gene are associated with AMH levels in women with polycystic ovary syndrome. Hum. Reprod. 24, 241–249 (2009).

  37. 37.

    et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology 144, 720–731 (2003).

  38. 38.

    et al. Improved radioimmunoassay for measurement of mouse thyrotropin in serum: strain differences in thyrotropin concentration and thyrotroph sensitivity to thyroid hormone. Thyroid 9, 1265–1271 (1999).

  39. 39.

    et al. Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. EMBO J. 18, 1900–1904 (1999).

  40. 40.

    & The Mouse Brain in Stereotaxic Coordinates, 2nd edn (Academic Press, San Diego, 2001).

  41. 41.

    , & Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44, 619–626 (2008).

  42. 42.

    & Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

Download references

Acknowledgements

The authors thank X.-H. Liao from the Refetoff laboratory (The University of Chicago, supported by US National Institutes of Health (NIH) grant DK15700) for measuring T4, T3, FT4I and TSH in mice, P. Scheiffele for the antibody to IGSF1 CTD and S. Kimmins (McGill University) and P. Bisschop (Academic Medical Center, University of Amsterdam) for human testis and pituitary RNA, respectively. We also thank H. Bikker, J.C. Moreno, A. Escudero, E. Aten, M. Losekoot, E. Endert, J.W.A. Smit, R.van Rijn and E.L. van Persijn-van Meerten for technical support and advice. We thank F.J. de Jong and Y. de Rijke for measuring serum inhibin B and AMH and for providing age references. We thank S. Tran and X. Zhou for assistance with collection of mouse serum samples. We acknowledge the help of N. Zwaveling, J. Gosen, E.J. Schroor, L.C.G. de Graaff and G. Radetti in providing clinical data. We acknowledge The Eastern Region Sequencing and Informatics Hub (see URLs), who undertook sequencing and preliminary bioinformatics analyses of data from the UK families. We thank the subjects and their families for participating. Our work was supported in part by a grant from the China Scholarship Council (to Y.S.); a National Sciences and Engineering Research Council (NSERC) Doctoral Research Award (to B.B.), NSERC Discovery Grant 341801-07 and a Fonds de la Recherche en Santé du Québec (FRSQ) Chercheur Boursier Senior Award (to D.J.B.); grants from the Wellcome Trust (095564 to N.S. and K.C.; WT077157/Z/05/Z to E.C. and J.K.W.; 084361, 078432 and 086545 to J.P.M.-B.), the National Institutes of Health Research Cambridge Biomedical Research Centre (to N.S. and K.C.) and the UK Medical Research Council (MRC; U117570590 to P.l.T.); a National Health and Medical Research Council of Australia Practitioner Fellowship (to T.M.E.D.); the Dutch Growth Research Foundation (D.G.D.B.); the Young Investigator grant of the Italian Ministry of Health and Istituto Auxologico Italiano IRCCS (GR-2008-1137632 to M.B.); and the Great Ormond Street Children's Hospital Charity (to M.T.D.).

Author information

Author notes

    • Yu Sun
    • , Beata Bak
    • , Nadia Schoenmakers
    •  & A S Paul van Trotsenburg

    These authors contributed equally to this work.

    • Krishna Chatterjee
    • , Mehul T Dattani
    • , Jan M Wit
    •  & Daniel J Bernard

    These authors jointly directed this work.

Affiliations

  1. Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.

    • Yu Sun
    • , Claudia A L Ruivenkamp
    • , Jeroen F J Laros
    • , Marjolein Kriek
    • , Sarina G Kant
    • , Cathy A J Bosch
    • , Johan T den Dunnen
    •  & Martijn H Breuning
  2. Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.

    • Beata Bak
    •  & Daniel J Bernard
  3. Institute of Metabolic Science, Metabolic Research Laboratories, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.

    • Nadia Schoenmakers
    • , Peter Voshol
    •  & Krishna Chatterjee
  4. Department of Pediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.

    • A S Paul van Trotsenburg
    • , Thomas Vulsma
    • , Marlies J Kempers
    •  & Raoul C Hennekam
  5. Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.

    • Wilma Oostdijk
    • , Wilhelmina H Stokvis-Brantsma
    •  & Jan M Wit
  6. The Sanger Institute Mouse Genetics Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.

    • Emma Cambridge
    •  & Jacqueline K White
  7. Neural Development Unit, University College London (UCL) Institute of Child Health, London, UK.

    • Paul le Tissier
    • , S Neda Mousavy Gharavy
    •  & Juan P Martinez-Barbera
  8. Division of Molecular Neuroendocrinology, National Institute for Medical Research, Mill Hill, London, UK.

    • Paul le Tissier
  9. Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.

    • Marlies J Kempers
  10. Department of Clinical Sciences & Community Health, Università degli Studi di Milano, Milan, Italy.

    • Luca Persani
    • , Irene Campi
    •  & Paolo Beck-Peccoz
  11. Division of Endocrine and Metabolic Disorders, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Auxologico Italiano, Milan, Italy.

    • Luca Persani
    •  & Marco Bonomi
  12. Endocrine Unit, Fondazione IRCCS Ca'Granda, Milan, Italy.

    • Irene Campi
    •  & Paolo Beck-Peccoz
  13. School of Medicine and Pharmacology, Fremantle Hospital Unit, The University of Western Australia, Perth, Western Australia, Australia.

    • Hongdong Zhu
    •  & Timothy M E Davis
  14. Subdivision of Endocrinology, Department of Pediatrics, Erasmus Medical Center–Sophia Children's Hospital, Rotterdam, The Netherlands.

    • Anita C S Hokken-Koelega
    •  & Daria Gorbenko Del Blanco
  15. Department of Paediatrics, West Middlesex University Hospital, Isleworth, UK.

    • Jayanti J Rangasami
  16. Department of Endocrinology and Metabolic Disorders, Leiden University Medical Center, Leiden, The Netherlands.

    • Nienke R Biermasz
    • , Natasha M Appelman-Dijkstra
    • , Eleonora P Corssmit
    • , Guido C J Hovens
    •  & Alberto M Pereira
  17. Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands.

    • Johan T den Dunnen
  18. Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.

    • Michael G Wade
  19. Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, UK.

    • Mehul T Dattani

Authors

  1. Search for Yu Sun in:

  2. Search for Beata Bak in:

  3. Search for Nadia Schoenmakers in:

  4. Search for A S Paul van Trotsenburg in:

  5. Search for Wilma Oostdijk in:

  6. Search for Peter Voshol in:

  7. Search for Emma Cambridge in:

  8. Search for Jacqueline K White in:

  9. Search for Paul le Tissier in:

  10. Search for S Neda Mousavy Gharavy in:

  11. Search for Juan P Martinez-Barbera in:

  12. Search for Wilhelmina H Stokvis-Brantsma in:

  13. Search for Thomas Vulsma in:

  14. Search for Marlies J Kempers in:

  15. Search for Luca Persani in:

  16. Search for Irene Campi in:

  17. Search for Marco Bonomi in:

  18. Search for Paolo Beck-Peccoz in:

  19. Search for Hongdong Zhu in:

  20. Search for Timothy M E Davis in:

  21. Search for Anita C S Hokken-Koelega in:

  22. Search for Daria Gorbenko Del Blanco in:

  23. Search for Jayanti J Rangasami in:

  24. Search for Claudia A L Ruivenkamp in:

  25. Search for Jeroen F J Laros in:

  26. Search for Marjolein Kriek in:

  27. Search for Sarina G Kant in:

  28. Search for Cathy A J Bosch in:

  29. Search for Nienke R Biermasz in:

  30. Search for Natasha M Appelman-Dijkstra in:

  31. Search for Eleonora P Corssmit in:

  32. Search for Guido C J Hovens in:

  33. Search for Alberto M Pereira in:

  34. Search for Johan T den Dunnen in:

  35. Search for Michael G Wade in:

  36. Search for Martijn H Breuning in:

  37. Search for Raoul C Hennekam in:

  38. Search for Krishna Chatterjee in:

  39. Search for Mehul T Dattani in:

  40. Search for Jan M Wit in:

  41. Search for Daniel J Bernard in:

Contributions

Y.S., J.T.d.D., M.K., N.S. and K.C. developed the exome sequencing protocol. A.S.P.v.T., W.O., S.G.K., N.R.B., N.M.A.-D., A.M.P., M.H.B., R.C.H., M.T.D., N.S., L.P., I.C., M.B., P.B.-P., H.Z., T.M.E.D., K.C., A.C.S.H.-K., D.G.D.B. and J.M.W. designed the clinical research studies. Y.S., J.F.J.L. and N.S. performed bioinformatics analyses, mutational analysis and genotyping. B.B. generated the vectors expressing mutant IGSF1 and performed all associated biochemical analyses; maintained the mouse colony, collected all mouse tissues and plasma, and analyzed pituitary gene expression; and prepared figures. D.J.B. generated the mouse model, supervised all in vitro and mouse work and participated in data collection and construction of the figures. P.V. and M.G.W. contributed to mouse phenotyping. E.C., J.K.W. and M.G.W. performed mouse T4 measurements. P.l.T. performed measurements of pituitary TSH and prolactin content. S.N.M.G. and J.P.M.-B. carried out the IGSF1 expression studies in mouse and human embryos. C.A.L.R. and C.A.J.B. performed and analyzed the microarray and hybridization experiments. A.S.P.v.T., W.O., W.H.S.-B., T.V., M.J.K., L.P., I.C., M.B., P.B.-P., H.Z., T.M.E.D., A.C.S.H.-K., D.G.D.B., J.J.R., S.G.K., N.R.B., N.M.A.-D., A.M.P., G.C.J.H., E.P.C., M.H.B., R.C.H., A.C.S.H.-K. and M.T.D. contributed to clinical evaluations and the delineation of the subject phenotypes. Y.S., B.B., N.S., A.S.P.v.T., K.C., M.T.D., R.C.H., D.J.B. and J.M.W. prepared the manuscript. D.J.B., J.M.W., K.C. and M.T.D. conceived and supervised the study.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Krishna Chatterjee or Mehul T Dattani or Jan M Wit or Daniel J Bernard.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–5, Supplementary Tables 1–6 and Supplementary Note

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.2453

Further reading