Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population


Atopic dermatitis is a common inflammatory skin disease caused by interaction of genetic and environmental factors. On the basis of data from a genome-wide association study (GWAS) and a validation study comprising a total of 3,328 subjects with atopic dermatitis and 14,992 controls in the Japanese population, we report here 8 new susceptibility loci: IL1RL1-IL18R1-IL18RAP (Pcombined = 8.36 × 10−18), the major histocompatibility complex (MHC) region (P = 8.38 × 10−20), OR10A3-NLRP10 (P = 1.54 × 10−22), GLB1 (P = 2.77 × 10−16), CCDC80 (P = 1.56 × 10−19), CARD11 (P = 7.83 × 10−9), ZNF365 (P = 5.85 × 10−20) and CYP24A1-PFDN4 (P = 1.65 × 10−8). We also replicated the associations of the FLG, C11orf30, TMEM232-SLC25A46, TNFRSF6B-ZGPAT, OVOL1, ACTL9 and KIF3A-IL13 loci that were previously reported in GWAS of European and Chinese individuals and a meta-analysis of GWAS for atopic dermatitis. These findings advance the understanding of the genetic basis of atopic dermatitis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot showing the −log10P values of 606,164 SNPs in the GWAS for 1,472 Japanese atopic dermatitis cases and 7,971 controls plotted against their respective positions on autosomes and the X chromosome.
Figure 2: Regional plots of association results within eight newly identified susceptibility regions for atopic dermatitis.


  1. Bieber, T. Mechanisms of disease: atopic dermatitis. N. Engl. J. Med. 358, 1483–1494 (2008).

    Article  CAS  Google Scholar 

  2. Boguniewicz, M. & Leung, D.Y. Recent insights into atopic dermatitis and implications for management of infectious complications. J. Allergy Clin. Immunol. 125, 4–13 (2010).

    Article  Google Scholar 

  3. Palmer, C.N. et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 38, 441–446 (2006).

    Article  CAS  Google Scholar 

  4. Irvine, A.D., McLean, W.H. & Leung, D.Y. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365, 1315–1327 (2011).

    Article  CAS  Google Scholar 

  5. Esparza-Gordillo, J. et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 41, 596–601 (2009).

    Article  CAS  Google Scholar 

  6. Sun, L.D. et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat. Genet. 43, 690–694 (2011).

    Article  CAS  Google Scholar 

  7. Paternoster, L. et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 44, 187–192 (2012).

    Article  CAS  Google Scholar 

  8. Johnston, A. et al. IL-1F5, -F6, -F8, and -F9: a novel IL-1 family signaling system that is active in psoriasis and promotes keratinocyte antimicrobial peptide expression. J. Immunol. 186, 2613–2622 (2011).

    Article  CAS  Google Scholar 

  9. Liew, F.Y., Pitman, N.I. & McInnes, I.B. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat. Rev. Immunol. 10, 103–110 (2010).

    Article  CAS  Google Scholar 

  10. Moffatt, M.F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).

    Article  CAS  Google Scholar 

  11. Torgerson, D.G. et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 43, 887–892 (2011).

    Article  CAS  Google Scholar 

  12. Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).

    Article  CAS  Google Scholar 

  13. Altrichter, S. et al. Serum IgE autoantibodies target keratinocytes in patients with atopic dermatitis. J. Invest. Dermatol. 128, 2232–2239 (2008).

    Article  CAS  Google Scholar 

  14. Magalhaes, J.G. et al. What is new with Nods? Curr. Opin. Immunol. 23, 29–34 (2011).

    Article  CAS  Google Scholar 

  15. Imamura, R. et al. Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J. Immunol. 184, 5874–5884 (2010).

    Article  CAS  Google Scholar 

  16. Vestergaard, C. et al. A Th2 chemokine, TARC, produced by keratinocytes may recruit CLA+CCR4+ lymphocytes into lesional atopic dermatitis skin. J. Invest. Dermatol. 115, 640–646 (2000).

    Article  CAS  Google Scholar 

  17. Tremblay, F. et al. Bidirectional modulation of adipogenesis by the secreted protein Ccdc80/DRO1/URB. J. Biol. Chem. 284, 8136–8147 (2009).

    Article  CAS  Google Scholar 

  18. Lopez, R.G. et al. C/EBPα and β couple interfollicular keratinocyte proliferation arrest to commitment and terminal differentiation. Nat. Cell Biol. 11, 1181–1190 (2009).

    Article  CAS  Google Scholar 

  19. Jung, K. et al. Peroxisome proliferator-activated receptor γ–mediated suppression of dendritic cell function prevents the onset of atopic dermatitis in NC/Tnd mice. J. Allergy Clin. Immunol. 127, 420–429 (2011).

    Article  CAS  Google Scholar 

  20. Hara, H. et al. Cell type–specific regulation of ITAM-mediated NF-κB activation by the adaptors, CARMA1 and CARD9. J. Immunol. 181, 918–930 (2008).

    Article  CAS  Google Scholar 

  21. Blonska, M. et al. CARMA1 controls Th2 cell–specific cytokine expression through regulating JunB and GATA3 transcription factors. J. Immunol. 188, 3160–3168 (2012).

    Article  CAS  Google Scholar 

  22. Jun, J.E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    Article  CAS  Google Scholar 

  23. Safford, M. et al. Egr-2 and Egr-3 are negative regulators of T cell activation. Nat. Immunol. 6, 472–480 (2005).

    Article  CAS  Google Scholar 

  24. Hart, P.H., Gorman, S. & Finlay-Jones, J.J. Modulation of the immune system by UV radiation: more than just the effects of vitamin D? Nat. Rev. Immunol. 11, 584–596 (2011).

    Article  CAS  Google Scholar 

  25. Peroni, D.G. et al. Correlation between serum 25–hydroxyvitamin D levels and severity of atopic dermatitis in children. Br. J. Dermatol. 164, 1078–1082 (2011).

    Article  CAS  Google Scholar 

  26. Wang, R. et al. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 106, 13439–13444 (2009).

    Article  CAS  Google Scholar 

  27. Spergel, J.M. & Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 112, S118–S127 (2003).

    Article  Google Scholar 

  28. Hirota, T. et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 43, 893–896 (2011).

    Article  CAS  Google Scholar 

  29. Ferreira, M.A. et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378, 1006–1014 (2011).

    Article  CAS  Google Scholar 

  30. Ramasamy, A. et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J. Allergy Clin. Immunol. 128, 996–1005 (2011).

    Article  CAS  Google Scholar 

  31. Hanifin, J.M. & Rajka, R.G. Diagnostic features of atopic dermatitis. Acta Derm. (Stockholm) 92 (suppl. 92), 44–47 (1980).

    Google Scholar 

  32. Nakamura, Y. The BioBank Japan Project. Clin. Adv. Hematol. Oncol. 5, 696–697 (2007).

    PubMed  Google Scholar 

  33. Takata, R. et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat. Genet. 42, 751–754 (2010).

    Article  CAS  Google Scholar 

  34. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  35. Breslow, N.E. & Day, N.E. Statistical methods in cancer research. Volume II—the design and analysis of cohort studies. IARC Sci. Publ. 1–406 (1987).

  36. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  Google Scholar 

  37. Li, Y. et al. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  Google Scholar 

  38. Li, Y. et al. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

    Article  CAS  Google Scholar 

  39. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

Download references


We thank all the individuals who participated in the study and also thank the collaborating physicians for helping with sample collection. We are grateful to the members of BioBank Japan and the Rotary Club of Osaka-Midosuji District 2660 Rotary International in Japan for supporting our study. We thank M.T. Shimizu, H. Sekiguchi, A.I. Jodo, N. Kawaraichi and the technical staff of the Center for Genomic Medicine for providing technical assistance and K. Barrymore for proofreading this manuscript. This work was conducted as part of the BioBank Japan Project, which is supported by the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was also partly supported by grants from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations



T.H. and M.T. designed the study and drafted the manuscript. A.T. and T.T. analyzed the GWAS data. T.H., K.T., S. Tanaka and M.K. performed the genotyping for the GWAS. M.S., T.Y., S.F., S.D., A.M., T. Enomoto, C.N., N.N., K.M., S.I., K.O., H.O., E.N., T. Sakamoto, N.H., K.E., H.S., T. Sasaki, T. Ebihara, M.A., S. Takeuchi and M.F. recruited subjects and participated in the diagnostic evaluations. M.T. wrote the manuscript. M.K. and Y.N. contributed to the overall GWAS study design.

Corresponding author

Correspondence to Mayumi Tamari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–6 (PDF 3895 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hirota, T., Takahashi, A., Kubo, M. et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet 44, 1222–1226 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing