Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression

Abstract

LIN28B regulates developmental processes by modulating microRNAs (miRNAs) of the let-7 family. A role for LIN28B in cancer has been proposed but has not been established in vivo. Here, we report that LIN28B showed genomic aberrations and extensive overexpression in high-risk neuroblastoma compared to several other tumor entities and normal tissues. High LIN28B expression was an independent risk factor for adverse outcome in neuroblastoma. LIN28B signaled through repression of the let-7 miRNAs and consequently resulted in elevated MYCN protein expression in neuroblastoma cells. LIN28B–let-7–MYCN signaling blocked differentiation of normal neuroblasts and neuroblastoma cells. These findings were fully recapitulated in a mouse model in which LIN28B expression in the sympathetic adrenergic lineage induced development of neuroblastomas marked by low let-7 miRNA levels and high MYCN protein expression. Interference with this pathway might offer therapeutic perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amplification and overexpression of LIN28B in poor-prognosis neuroblastoma.
Figure 2: LIN28B silencing results in growth inhibition and neuronal differentiation.
Figure 3: The LIN28B–let-7–MYCN axis in neuroblastoma.
Figure 4: LIN28B drives malignant transformation.
Figure 5: Lin28b drives neuroblastoma in vivo.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Moss, E.G., Lee, R.C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. West, J.A. et al. A role for Lin28 in primordial germ-cell development and germ-cell malignancy. Nature 460, 909–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Polesskaya, A. et al. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev. 21, 1125–1138 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balzer, E., Heine, C., Jiang, Q., Lee, V.M. & Moss, E.G. LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development 137, 891–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Viswanathan, S.R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 41, 843–848 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, Y. et al. Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384, 51–61 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y.C. et al. Lin-28B expression promotes transformation and invasion in human hepatocellular carcinoma. Carcinogenesis 31, 1516–1522 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Permuth-Wey, J. et al. LIN28B polymorphisms influence susceptibility to epithelial ovarian cancer. Cancer Res. 71, 3896–3903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. King, C.E. et al. LIN28B promotes colon cancer progression and metastasis. Cancer Res. 71, 4260–4268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ong, K.K. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41, 729–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sulem, P. et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 41, 734–738 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Viswanathan, S.R., Daley, G.Q. & Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, Y., Jeon, K., Lee, J.T., Kim, S. & Kim, V.N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663–4670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Newman, M.A., Thomson, J.M. & Hammond, S.M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Piskounova, E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147, 1066–1079 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, Y.S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, C.D. et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 67, 7713–7722 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Boyerinas, B., Park, S.M., Hau, A., Murmann, A.E. & Peter, M.E. The role of let-7 in cell differentiation and cancer. Endocr. Relat. Cancer 17, F19–F36 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Takamizawa, J. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Shell, S. et al. Let-7 expression defines two differentiation stages of cancer. Proc. Natl. Acad. Sci. USA 104, 11400–11405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Øra, I. & Eggert, A. Progress in treatment and risk stratification of neuroblastoma: impact on future clinical and basic research. Semin. Cancer Biol. 21, 217–228 (2011).

    Article  PubMed  Google Scholar 

  29. Maris, J.M., Hogarty, M.D., Bagatell, R. & Cohn, S.L. Neuroblastoma. Lancet 369, 2106–2120 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Westermann, F. et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in neuroblastomas. Genome Biol. 9, R150 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Bray, I. et al. Widespread dysregulation of miRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS ONE 4, e7850 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. De Preter, K. et al. miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples. Clin. Cancer Res. 17, 7684–7692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shohet, J.M. et al. A genome-wide search for promoters that respond to increased MYCN reveals both new oncogenic and tumor suppressor microRNAs associated with aggressive neuroblastoma. Cancer Res. 71, 3841–3851 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Schulte, J.H. et al. MYCN regulates oncogenic microRNAs in neuroblastoma. Int. J. Cancer 122, 699–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 12, 247–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lovén, J. et al. MYCN-regulated microRNAs repress estrogen receptor-α (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc. Natl. Acad. Sci. USA 107, 1553–1558 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tivnan, A. et al. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11, 33 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le, M.T. et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol. 29, 5290–5305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cole, K.A. et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol. Cancer Res. 6, 735–742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welch, C., Chen, Y. & Stallings, R.L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017–5022 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Buechner, J. et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br. J. Cancer 105, 296–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Molenaar, J.J. et al. Copy number defects of G1-cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis. Genes Chromosom. Cancer 51, 10–19 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Schulte, J.H. et al. MYCN and ALKF1174L are sufficient to drive neuroblastoma development from neural crest progenitor cells. Oncogene published online, doi:10.1038/onc.2012.106 (9 April 2012).

    Article  CAS  PubMed  Google Scholar 

  45. Stanke, M. et al. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 133, 141–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Weiss, W.A., Aldape, K., Mohapatra, G., Feuerstein, B.G. & Bishop, J.M. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 16, 2985–2995 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mertz, J.A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA 108, 16669–16674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liang, L. et al. MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology 52, 1731–1740 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, J. et al. MicroRNA-125b/Lin28 pathway contributes to the mesendodermal fate decision of embryonic stem cells. Stem Cells Dev. 21, 1524–1537 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Helland, Å. et al. Deregulation of MYCN, LIN28B and LET7 in a molecular subtype of aggressive high-grade serous ovarian cancers. PLoS ONE 6, e18064 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cotterman, R. & Knoepfler, P.S. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS ONE 4, e5799 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Molenaar, J.J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483, 589–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Valentijn, L.J. et al. Inhibition of a new differentiation pathway in neuroblastoma by copy number defects of N-myc, Cdc42, and nm23 genes. Cancer Res. 65, 3136–3145 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Eda, A., Tamura, Y., Yoshida, M. & Hohjoh, H. Systematic gene regulation involving miRNAs during neuronal differentiation of mouse P19 embryonic carcinoma cell. Biochem. Biophys. Res. Commun. 388, 648–653 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Olsson-Carter, K. & Slack, F.J. A developmental timing switch promotes axon outgrowth independent of known guidance receptors. PLoS Genet. 6 pii: e1001054 (2010).

  57. Caron, H. et al. Allelic loss of chromosome 1p36 in neuroblastoma is of preferential maternal origin and correlates with N-myc amplification. Nat. Genet. 4, 187–190 (1993).

    Article  CAS  PubMed  Google Scholar 

  58. Molenaar, J.J., van Sluis, P., Boon, K., Versteeg, R. & Caron, H.N. Rearrangements and increased expression of cyclin D1 (CCND1) in neuroblastoma. Genes Chromosom. Cancer 36, 242–249 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Fieuw, A. et al. Identification of a novel recurrent 1q42.2–1qter deletion in high risk MYCN single copy 11q deleted neuroblastomas. Int. J. Cancer 130, 2599–2606 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Molenaar, J.J. et al. Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma. Cancer Res. 68, 2599–2609 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Cheng, A.J. et al. Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma. Eur. J. Cancer 43, 1467–1475 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Molenaar, J.J. et al. Cyclin D1 is a direct transcriptional target of GATA3 in neuroblastoma tumor cells. Oncogene 29, 2739–2745 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Molenaar, J.J. et al. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc. Natl. Acad. Sci. USA 106, 12968–12973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schulte, J.H. et al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer Res. 69, 2065–2071 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Mestdagh, P. et al. High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA. Nucleic Acids Res. 36, e143 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Mestdagh, P. et al. A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. 10, R64 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Heukamp, L.C. et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci. Transl. Med. 4, 141ra91 (2012).

    Article  PubMed  CAS  Google Scholar 

  68. Bill, A. et al. Cytohesins are cytoplasmic ErbB receptor activators. Cell 143, 201–211 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We kindly thank A. Odersky, L. Schild, I. van der Ploeg, E. Dolman, T. Eleveld and L. Bate Eya for excellent technical assistance. The research reported in this manuscript was supported by grants from the Villa Joep Foundation, Kinderen Kankervrij (KiKa), the Tom Voûte Fund and the Netherlands Cancer Foundation. R.L.S. was a recipient of grants from the Science Foundation Ireland (07/IN.1/B1776), the Children's Medical and Research Foundation and the US National Institutes of Health (5R01CA127496). A.E. is funded by the European Union (ENCCA: EU Seventh Framework Programme, Network of Excellence 261474; ASSET: EU Seventh Framework Programme, CP 259348). Support was also provided by the National Genome Research Network (NGFNplus (Germany); PKN-01GS0894-6 to J.H.S., A.E. and A.S.) and the German Cancer Aid (grant 108941 to J.H.S. and A.E.).

Author information

Authors and Affiliations

Authors

Contributions

J.J.M. and J.H.S. contributed to project coordination, data analysis and preparation of the manuscript. R.D.-F. and R.L.S. performed experiments and data analysis and contributed to preparation of the manuscript. J.K. and R. Volckmann performed analysis of bioinformatics data. M.E.E., S.L., K.D., P.M., P.v.S., J.v.N., M.B., I.B., L.J.V., F.H., K.K. and L.K.-H. conducted wet-lab experiments and data analysis. L.H., A. Sprüssel, T.T. and J.V. performed studies of the in vivo models. M.M.v.N., L.V., F.S. and M.F. contributed and/or organized samples and their accompanying clinical data. A. Schramm, A.E., H.N.C. and R. Versteeg supervised the project and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Jan J Molenaar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–24 and Supplementary Tables 1–5 and 7 (PDF 6833 kb)

Supplementary Table 6

Regulated genes after LIN28B and/or MYCN over-expression in JoMa1 cells (XLS 236 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molenaar, J., Domingo-Fernández, R., Ebus, M. et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression. Nat Genet 44, 1199–1206 (2012). https://doi.org/10.1038/ng.2436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2436

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer