Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Abstract

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the human ADAR1 gene.
Figure 2: Structural context of ADAR1 protein substitutions.
Figure 3: Protein blot of lymphoblastoid cell lines (LCLs).
Figure 4: Site-specific and competition editing assays.
Figure 5: Quantitative RT-PCR of a panel of six ISGs in whole blood measured in individuals with AGS, their parents and individuals with DSH.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Crow, Y.J. & Livingston, J.H. Aicardi-Goutières syndrome: an important Mendelian mimic of congenital infection. Dev. Med. Child Neurol. 50, 410–416 (2008).

    PubMed  Google Scholar 

  2. Lebon, P. et al. Intrathecal synthesis of interferon-α in infants with progressive familial encephalopathy. J. Neurol. Sci. 84, 201–208 (1988).

    CAS  PubMed  Google Scholar 

  3. Crow, Y.J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    CAS  PubMed  Google Scholar 

  4. Crow, Y.J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat. Genet. 38, 910–916 (2006).

    CAS  PubMed  Google Scholar 

  5. Rice, G.I. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstone, D.C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    CAS  PubMed  Google Scholar 

  7. Rice, G. et al. Clinical and molecular phenotype of Aicardi-Goutières syndrome. Am. J. Hum. Genet. 81, 713–725 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutières syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramantani, G. et al. Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutières syndrome. Arthritis Rheum. 62, 1469–1477 (2010).

    CAS  PubMed  Google Scholar 

  10. Haaxma, C.A. et al. A de novo p.Asp18Asn mutation in TREX1 in a patient with Aicardi-Goutières syndrome. Am. J. Med. Genet. A. 152A, 2612–2617 (2010).

    CAS  PubMed  Google Scholar 

  11. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yan, N. et al. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lahouassa, H. et al. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Genovesio, A. et al. Automated genome-wide visual profiling of cellular proteins involved in HIV infection. J. Biomol. Screen. 16, 945–958 (2011).

    CAS  PubMed  Google Scholar 

  18. Beck-Engeser, G.B., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartner, J.C., Walkley, C.R., Lu, J. & Orkin, S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    CAS  PubMed  Google Scholar 

  20. Crow, Y.J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. NY Acad. Sci. 1238, 91–98 (2011).

    CAS  PubMed  Google Scholar 

  21. Hogg, M., Paro, S., Keegan, L.P. & O'Connell, M.A. RNA editing by mammalian ADARs. Adv. Genet. 73, 87–120 (2011).

    CAS  PubMed  Google Scholar 

  22. George, C.X. & Samuel, C.E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl. Acad. Sci. USA 96, 4621–4626 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Herbert, A. et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl. Acad. Sci. USA 94, 8421–8426 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyamura, Y. et al. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 73, 693–699 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, M. et al. Mutational spectrum of the ADAR1 gene in dyschromatosis symmetrica hereditaria. Arch. Dermatol. Res. 302, 469–476 (2010).

    CAS  PubMed  Google Scholar 

  26. Tojo, K. et al. Dystonia, mental deterioration, and dyschromatosis symmetrica hereditaria in a family with ADAR1 mutation. Mov. Disord. 21, 1510–1513 (2006).

    PubMed  Google Scholar 

  27. Kondo, T. et al. Dyschromatosis symmetrica hereditaria associated with neurological disorders. J. Dermatol. 35, 662–666 (2008).

    PubMed  Google Scholar 

  28. Heale, B.S. et al. Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J. 28, 3145–3156 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cho, D.S. et al. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278, 17093–17102 (2003).

    CAS  PubMed  Google Scholar 

  30. Abdel-Salam, G.M. et al. Chilblains as a diagnostic sign of Aicardi-Goutières syndrome. Neuropediatrics 41, 18–23 (2010).

    CAS  PubMed  Google Scholar 

  31. Kondo, T. et al. Six novel mutations of the ADAR1 gene in patients with dyschromatosis symmetrica hereditaria: histological observation and comparison of genotypes and clinical phenotypes. J. Dermatol. 35, 395–406 (2008).

    CAS  PubMed  Google Scholar 

  32. Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    CAS  PubMed  Google Scholar 

  33. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    PubMed  PubMed Central  Google Scholar 

  34. Blow, M., Futreal, P.A., Wooster, R. & Stratton, M.R. A survey of RNA editing in human brain. Genome Res. 14, 2379–2387 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, D.D. et al. Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hundley, H.A. & Bass, B.L. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem. Sci. 35, 377–383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu, D., Lamm, A.T. & Fire, A.Z. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nat. Struct. Mol. Biol. 18, 1094–1101 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, W. et al. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J. Biol. Chem. 280, 3946–3953 (2005).

    CAS  PubMed  Google Scholar 

  39. Vitali, P. & Scadden, A.D. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct. Mol. Biol. 17, 1043–1050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gallo, A., Keegan, L.P., Ring, G.M. & O'Connell, M.A. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J. 22, 3421–3430 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yao, Y. et al. Development of potential pharmacodynamic and diagnostic markers for anti–IFN-α monoclonal antibody trials in systemic lupus erythematosus. Hum. Genomics Proteomics 2009, 374312 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Higgs, B.W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).

    CAS  PubMed  Google Scholar 

  43. Macbeth, M.R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534–1539 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Sali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    CAS  PubMed  Google Scholar 

  46. Chen, V.B., Davis, I.W. & Richardson, D.C. KING (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 18, 2403–2409 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Word, J.M., Lovell, S.C., Richardson, J.S. & Richardson, D.C. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285, 1735–1747 (1999).

    CAS  PubMed  Google Scholar 

  48. Word, J.M. et al. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J. Mol. Biol. 285, 1711–1733 (1999).

    CAS  PubMed  Google Scholar 

  49. Lovell, S.C., Word, J.M., Richardson, J.S. & Richardson, D.C. The penultimate rotamer library. Proteins 40, 389–408 (2000).

    CAS  PubMed  Google Scholar 

  50. Losey, H.C., Ruthenburg, A.J. & Verdine, G.L. Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA. Nat. Struct. Mol. Biol. 13, 153–159 (2006).

    CAS  PubMed  Google Scholar 

  51. Stefl, R. et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 143, 225–237 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartz, T. et al. Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284, 1841–1845 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the participating families for the use of genetic samples and clinical information. We thank B. Hamel, H. Brunner and other clinical collaborators for contributing samples not included in the current manuscript, A.P. Jackson for highlighting the presence of intracranial calcification in individuals with DSH with a p.Gly1007Arg alteration in ADAR1 and D.B. Stetson and D.T. Bonthron for critical reading of the manuscript. D.B. Stetson (University of Washington) provided the ADAR1 constructs used in the editing assays. We thank the NHLBI GO Exome Sequencing Project and its ongoing studies that produced and provided exome variant calls for comparison: the Lung GO Sequencing Project (HL-102923), the Women's Health Initiative (WHI) Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart GO Sequencing Project (HL-103010). Y.J.C. acknowledges the Manchester National Institute for Health Research (NIHR) Biomedical Research Centre. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement 241779 and from the Great Ormond Street Hospital Children's Charity.

Author information

Authors and Affiliations

Authors

Contributions

G.I.R. performed quantitative PCR analysis. P.R.K. performed protein blot analysis. G.M.A.F. performed cell culture and interferon stimulation experiments with assistance from G.I.R. and T.A.B. M.S. performed Sanger sequencing with assistance from M.Z., G.M.A.F. and E.M.J. G.I.R. analyzed sequence data. M.S. and G.M.A.F. undertook microsatellite genotyping. J.E.D. and S.S.B. undertook analysis of the exome sequence data. J.H.L. was responsible for neuroradiological phenotyping. P.L. and F.R. measured interferon activity in affected individuals. M.A.O., L.P.K., S.M.G. and N.M.M. carried out ADAR1 editing assays. T.S. and M.K. provided the DSH RNA samples. S.C.L. and P.J.M. carried out ADAR1 structural analysis. Y.J.C. designed and supervised the project and wrote the manuscript with support from G.I.R. C.A.B., R.B., E.B., P.A.B., L.A.B., M.C., C.D.L., P.d.L., M.d.T., I.D., E.F., A.G.-C., A.H., R.K., J.-P.S.-M.L., C.M.L., A.M.M., W.M., C.M., I.O., S.O., P.P., M.R., R.A.R., J.L.S., K.S., T.Y.T., W.G.v.d.M., A.V., G.V., E.L.W., E. Wassmer and E. Whittaker identified subjects with AGS or assisted with related clinical and laboratory studies.

Corresponding author

Correspondence to Yanick J Crow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–8 (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, G., Kasher, P., Forte, G. et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44, 1243–1248 (2012). https://doi.org/10.1038/ng.2414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing