Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome

Abstract

Following a previous genome-wide association study (GWAS 1) including 744 cases and 895 controls, we analyzed genome-wide association data from a new cohort of Han Chinese (GWAS 2) with 1,510 polycystic ovary syndrome (PCOS) cases and 2,016 controls. We followed up significantly associated signals identified in the combined results of GWAS 1 and 2 in a total of 8,226 cases and 7,578 controls. In addition to confirming the three loci we previously reported, we identify eight new PCOS association signals at P < 5 × 10−8: 9q22.32, 11q22.1, 12q13.2, 12q14.3, 16q12.1, 19p13.3, 20q13.2 and a second independent signal at 2p16.3 (the FSHR gene). These PCOS association signals show evidence of enrichment for candidate genes related to insulin signaling, sexual hormone function and type 2 diabetes (T2D). Other candidate genes were related to calcium signaling and endocytosis. Our findings provide new insight and direction for discovering the biological mechanisms of PCOS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome-wide Manhattan plot for the GWAS meta-analysis.
Figure 2: Regional plots of the eight newly discovered PCOS loci.

Similar content being viewed by others

References

  1. Ehrmann, D.A., Barnes, R.B., Rosenfield, R.L., Cavaghan, M.K. & Imperial, J. Prevalence of impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. Diabetes Care 22, 141–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Goodarzi, M.O. & Azziz, R. Diagnosis, epidemiology, and genetics of the polycystic ovary syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 20, 193–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Carmina, E. Cardiovascular risk and events in polycystic ovary syndrome. Climacteric 12, 22–25 (2009).

    Article  PubMed  Google Scholar 

  4. Kandaraki, E., Christakou, C. & Diamanti-Kandarakis, E. Metabolic syndrome and polycystic ovary syndrome and vice versa. Arq. Bras. Endocrinol. Metabol. 53, 227–237 (2009).

    Article  PubMed  Google Scholar 

  5. Wild, S., Pierpoint, T., Jacobs, H. & McKeigue, P. Long-term consequences of polycystic ovary syndrome: results of a 31 year follow-up study. Hum. Fertil. (Camb) 3, 101–105 (2000).

    Article  Google Scholar 

  6. Chen, Z.J. et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43, 55–59 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Kerns, S.L. et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 78, 1292–1300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, T. et al. Identification of YAP1 as a novel susceptibility gene for polycystic ovary syndrome. J. Med. Genet. 49, 254–257 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Hao, Y., Chun, A., Cheung, K., Rashidi, B. & Yang, X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J. Biol. Chem. 283, 5496–5509 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Barrett, J.C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703–707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  12. Cooper, J.D. et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat. Genet. 40, 1399–1401 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Plagnol, V. et al. Genome-wide association analysis of autoantibody positivity in type 1 diabetes cases. PLoS Genet. 7, e1002216 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Todd, J.A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hakonarson, H. et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes 57, 1143–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, H. et al. Genetically dependent ERBB3 expression modulates antigen presenting cell function and type 1 diabetes risk. PLoS ONE 5, e11789 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Weedon, M.N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39, 1245–1250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kazmierczak, B. et al. Cloning and molecular characterization of part of a new gene fused to HMGIC in mesenchymal tumors. Am. J. Pathol. 152, 431–435 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ashar, H.R. et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas to distinct transcriptional regulatory domains. Cell 82, 57–65 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Moller, D.E. & Flier, J.S. Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance). N. Engl. J. Med. 319, 1526–1529 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Moller, D.E., Yokota, A., White, M.F., Pazianos, A.G. & Flier, J.S. A naturally occurring mutation of insulin receptor alanine 1134 impairs tyrosine kinase function and is associated with dominantly inherited insulin resistance. J. Biol. Chem. 265, 14979–14985 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Taylor, S.I. et al. Mutations in insulin-receptor gene in insulin-resistant patients. Diabetes Care 13, 257–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Z.J. et al. Correlation between single nucleotide polymorphism of insulin receptor gene with polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi 39, 582–585 (2004).

    PubMed  Google Scholar 

  25. Siegel, S. et al. AC/T single nucleotide polymorphism at the tyrosine kinase domain of the insulin receptor gene is associated with polycystic ovary syndrome. Fertil. Steril. 78, 1240–1243 (2002).

    Article  PubMed  Google Scholar 

  26. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 12, 106–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Simoni, M., Tempfer, C.B., Destenaves, B. & Fauser, B. Functional genetic polymorphisms and female reproductive disorders: Part I: polycystic ovary syndrome and ovarian response. Hum. Reprod. Update 14, 459–484 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. O'Flaherty, E. & Kaye, J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics 4, 13 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang, G. et al. ZNF217 suppresses cell death associated with chemotherapy and telomere dysfunction. Hum. Mol. Genet. 14, 3219–3225 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Sudo, S. et al. Genetic and functional analyses of polymorphisms in the human FSH receptor gene. Mol. Hum. Reprod. 8, 893–899 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cooper, J.D. et al. Analysis of 55 autoimmune disease and type II diabetes loci: further confirmation of chromosomes 4q27, 12q13.2 and 12q24.13 as type I diabetes loci, and support for a new locus, 12q13.3-q14.1. Genes Immun. 10, S95–S120 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mi, H. et al. PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res. 38, D204–D210 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Thomas, P.D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Joshi-Tope, G. et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 33, D428–D432 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Matthews, L. et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37, D619–D622 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Ogata, H. et al. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 81, 19–25 (2004).

  40. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Lindgren, C.M. et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet. 5, e1000508 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shi, Y.Y. & He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 15, 97–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Petukhova, L. et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113–117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi, Y. et al. Common variants on 8p12 and 1q24. 2 confer risk of schizophrenia. Nat. Genet. 43, 1224–1227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all participants involved in this study. This study was supported by grants from the National Basic Research Program of China (973 Program: 2012CB944700, 2010CB529600, 2011CB944502 and 2010CB945002), the 863 Program (2012AA02A515), the National Natural Science Foundation of China (81130022, 30973170, 81121001, 31000553, 81000238, 81070461 and 81000236), the National Key Technology Research and Development Program (2011BAI17B00), the Science Research Foundation Item of No-earnings Health Vocation (201002013), the Program for Changjiang Scholars and the Innovative Research Team in University (IRT1025), the Foundation for the Author of National Excellent Doctoral Dissertation of China (201026) and the Program for New Century Excellent Talents in University (NCET-09-0550).

Author information

Authors and Affiliations

Authors

Contributions

Z.-J.C., L.H. and Yongyong Shi designed the whole study. Yongyong Shi supervised the experiments and data analysis. Z.-J.C. supervised patient diagnosis and sample recruitment. Yongyong Shi, Z.L., H.Z., T.L. and J. Shen conducted data analyses and drafted the manuscript. H.Z., Yuhua Shi, L.G., J.M., Yingying Qin and J. Yan recruited samples. Y.C., D.Y., B.Z., X. Liang, Junzhao Zhao, D. Zhu, X.Z., Y.Y., Junli Zhao, S.Z., A.Y., J.L., J. Shi, J. Yang, H.J., J.X., X.Q., Y. Sun, Yajie Zhang, C.H., X.J., D. Zhao, C.R., X. Li, W.Z. and Yiwen Zhang coordinated and provided samples from different hospitals. J.C., Wenjin Li, Q.W., G.H., A.Z., Weidong Li, C.W., B.L. and Ying Qin performed or contributed to the main experiments. L.Y., Y. Zhao, D.W. and C.Z. performed DNA extraction. X.G and J.Z. performed endocrine biochemical examination. All authors critically reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Lin He or Zi-Jiang Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Zhao, H., Shi, Y. et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat Genet 44, 1020–1025 (2012). https://doi.org/10.1038/ng.2384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2384

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing