Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits

Abstract

We present an approximate conditional and joint association analysis that can use summary-level statistics from a meta-analysis of genome-wide association studies (GWAS) and estimated linkage disequilibrium (LD) from a reference sample with individual-level genotype data. Using this method, we analyzed meta-analysis summary data from the GIANT Consortium for height and body mass index (BMI), with the LD structure estimated from genotype data in two independent cohorts. We identified 36 loci with multiple associated variants for height (38 leading and 49 additional SNPs, 87 in total) via a genome-wide SNP selection procedure. The 49 new SNPs explain approximately 1.3% of variance, nearly doubling the heritability explained at the 36 loci. We did not find any locus showing multiple associated SNPs for BMI. The method we present is computationally fast and is also applicable to case-control data, which we demonstrate in an example from meta-analysis of type 2 diabetes by the DIAGRAM Consortium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Manolio, T.A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 363, 166–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Speliotes, E.K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Galarneau, G. et al. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 42, 1049–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanna, S. et al. Fine mapping of five loci associated with kow-density lipoprotein cholesterol detects variants that double the explained heritability. PLoS Genet. 7, e1002198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ripke, S. et al. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 43, 969–976 (2011).

    Article  CAS  Google Scholar 

  10. Sklar, P. et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  11. Trynka, G. et al. Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sonesson, A.K., Meuwissen, T.H. & Goddard, M.E. The use of communal rearing of families and DNA pooling in aquaculture genomic selection schemes. Genet. Sel. Evol. 42, 41 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weir, B.S. Genetic Data Analysis. (Sinauer Associates, Sunderland, Massachusetts, 1990).

  14. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42, 565–569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shea, J. et al. Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nat. Genet. 43, 801–805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pardo, L. et al. Global similarity with local differences in linkage disequilibrium between the Dutch and HapMap-CEU populations. Eur. J. Hum. Genet. 17, 802–810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Yang, J. et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Visscher, P.M., Hill, W.G. & Wray, N.R. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Magnusson, P.K. & Rasmussen, F. Familial resemblance of body mass index and familial risk of high and low body mass index. A study of young men in Sweden. Int. J. Obes. Relat. Metab. Disord. 26, 1225–1231 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Schousboe, K. et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 6, 409–421 (2003).

    Article  PubMed  Google Scholar 

  25. Wood, A.R. et al. Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association. Hum. Mol. Genet. 20, 4082–4092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  27. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  28. Rimm, E.B. et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 338, 464–468 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Medland, S.E. et al. Common variants in the Trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet. 85, 750–755 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laurie, C.C. et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet. Epidemiol. 34, 591–602 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ke, X. et al. Efficiency and consistency of haplotype tagging of dense SNP maps in multiple samples. Hum. Mol. Genet. 13, 2557–2565 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Teo, Y.Y. et al. Genome-wide comparisons of variation in linkage disequilibrium. Genome Res. 19, 1849–1860 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the staff and participants of the ARIC study for their important contributions. We thank all referees for many constructive comments and suggestions. We acknowledge funding from the Australian National Health and Medical Research Council (NHMRC; 241944, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 496688, 552485, 613672, 613601 and 1011506), the US National Institutes of Health (AA07535, AA10248, AA014041, AA13320, AA13321, AA13326 and DA12854) and the Australian Research Council (ARC; DP0770096 and DP1093502). A.P.M. acknowledges financial support from the Wellcome Trust (WT081682/Z/06/Z). M.I.M. acknowledges financial support from the Wellcome Trust (WT083270). The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by contracts with the National Heart, Lung, and Blood Institute (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C and HHSN268201100012C), the XXX (R01HL087641, R01HL59367 and R01HL086694), the US National Human Genome Research Institute (U01HG004402) and the US National Institutes of Health (HHSN268200625226C). Infrastructure was partly supported by a component of the US National Institutes of Health and NIH Roadmap for Medical Research (UL1RR025005).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

P.M.V. and M.E.G. designed the study. M.E.G., J.Y. and P.M.V. derived the analytical results. J.Y. performed all statistical analyses. J.Y. and P.M.V. wrote the first draft of the paper. M.N.W., R.J.L., T.M.F., M.I.M. and J.N.H. contributed the summary data of the height and BMI meta-analyses on behalf of the GIANT Consortium and provided comments that improved earlier versions of the manuscript. T.F., A.P.M. and M.I.M. contributed the summary data of the T2D meta-analysis on behalf of the DIAGRAM Consortium. S.E.M., P.A.F.M., A.C.H., N.G.M. and G.W.M. contributed the individual-level and imputed genotypes and phenotype data of the QIMR cohort.

Corresponding author

Correspondence to Peter M Visscher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members is provided in the Supplementary Note.

A full list of members is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–5 and Supplementary Note (PDF 5267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Ferreira, T., Morris, A. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44, 369–375 (2012). https://doi.org/10.1038/ng.2213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2213

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing