Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus

Abstract

We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest P value (6.7 × 10−13, odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 × 10−42 (OR = 1.40; 95% CI = 1.34–1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of β-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dense mapping analysis of KCNQ1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fukushima, M., Suzuki, H. & Seino, Y. Insulin secretion capacity in the development from normal glucose tolerance to type 2 diabetes. Diabetes Res. Clin. Pract. 66, S37–S43 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Haga, H., Yamada, R., Ohnishi, Y., Nakamura, Y. & Tanaka, T. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. J. Hum. Genet. 47, 605–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. NCI-NHGRI Working Group on Replication in Association Studies. Replicating genotype-phenotype associations. Nature 447, 655–660 (2007).

  4. Matthews, D.R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Ozaki, K. et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Mori, Y. et al. Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate loci on 7p and 11p. Diabetes 51, 1247–1255 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Nawata, H. et al. Genome-wide linkage analysis of type 2 diabetes mellitus reconfirms the susceptibility locus on 11p13-p12 in Japanese. J. Hum. Genet. 49, 629–634 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Zeggini, E. et al. Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science 316, 1336–1340 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Zeggini, E. et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 40, 638–645 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barhanin, J. et al. K(v)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384, 78–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12, 17–23 (1996).

    Article  PubMed  Google Scholar 

  13. Neyroud, N. et al. A novel mutation in the potassium channel gene KvLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat. Genet. 15, 186–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, Y.H. et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299, 251–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Demolombe, S. et al. Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am. J. Physiol. Cell Physiol. 280, C359–C372 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Chouabe, C. et al. Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J. 16, 5472–5479 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ullrich, S. et al. Effects of IKs channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch. 451, 428–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Sato, Y. et al. Designing a multistage, SNP-based, genome screen for common diseases. J. Hum. Genet. 49, 669–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Grant, S.F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38, 320–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Scott, L.J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Steinthorsdottir, V. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 39, 770–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyake, K. et al. Association of TCF7L2 polymorphisms with susceptibility to type 2 diabetes in 4,087 Japanese subjects. J. Hum. Genet. 53, 174–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Horikoshi, M. et al. Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50, 2461–2466 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Horikawa, Y. et al. Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J. Clin. Endocrinol. Metab. (in the press).

  27. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Ohnishi, Y. et al. A high-throughput SNP typing system for genome-wide association studies. J. Hum. Genet. 46, 471–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bannai, M. et al. Single-nucleotide-polymorphism genotyping for whole-genome-amplified samples using automated fluorescence correlation spectroscopy. Anal. Biochem. 327, 215–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Barrett, J.C., Fry, B., Maller, J. & Daly, M.J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the participants in the project; S. Sugano and S. Tsuji for support and helpful discussion throughout the project; H. Sakamoto, K. Yoshimura and N. Nishida for genotyping and quality control of the data; M. Yamaoka-Sageshima, K. Nagase, D. Suzuki and A. Berglund for technical assistance; and staff of Mitsui Knowledge Industry Inc. (Tokyo) for help with bioinformatics. This work was supported by a grant from the Program for Promotion of Fundamental Studies in Health Sciences of the Pharmaceuticals and Medical Devices Agency (PMDA) of Japan; a grant from the National Institute of Biomedical Innovation (NIBIO) of Japan; grants from the Ministry of Health, Labour, and Welfare of Japan; a Grant-in-Aid for Scientific Research on Priority Areas (C), “Medical Genome Science (Millennium Genome Project),” “Applied Genomics” and “Comprehensive Genomics” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan; and a grant from New Energy and Industrial Technology Development Organization (NEDO). The replication 2 study was supported by a grant from Cooperative Link of Unique Science and Technology for Economy Revitalization (CLUSTER, Tokushima, Japan). The Hong Kong diabetes case-control study was supported by the Hong Kong Research Grants Committee Central Allocation Scheme CUHK 1/04C. The Korean case-control study was supported by a grant from the Korea Health 21 R&D Project of the Ministry of Health and Welfare of the Republic of Korea (00-PJ3-PG6-GN07-001 to K.S.P.). The replication 5 study and Botnia prospective study were supported by Swedish Research Council (Linne grant), Sigrid Juselius Foundation, Folkhaelsan Research Foundation, European Foundation for the Study of Diabetes and Swedish Diabetes Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Principal investigators: K. Yasuda and M.K. Manuscript writing: K. Yasuda., K.M., Y. Horikawa and M.K. Diabetes project planning and design: K. Yasuda, K.M., Y. Hirota, H. Mori, T.Y. and M.K. Ascertainment of study subjects and general data analyses in Japan: K. Yasuda, K.M., Y. Horikawa, K.H., H.O., H.F., Y. Hirota, H. Mori, Y. Sato, K. Yamagata, Y. Hinokio, H.-Y.W., T. Tanahashi, N.N., Y.O., N.I., Y.I., Y.Y., Y. Seino, H. Maegawa, A.K., J.T., E.M., N.K., M.I., H. Makino, K.N., T.K. and M.K. Genotyping and sequencing analyses in Japan: K.M., Y. Horikawa, Y. Hirota, T. Tanahashi, A.S., Y.N., K. Yamamoto, T.Y., K.T. and M.I. Statistical analyses: K.M., Y. Horikawa, Y. Hirota, E.M., T.Y., K.T. and M.I. Genetic analyses in Korea: H.D.S., Y.M.C., K.S.P. and H.K.L. Genetic analyses in Hong Kong: M.C.Y.N., R.C.W.M., W.-Y.S. and J.C.N.C. Genetic analyses in Europe: A.J., V.L., T. Tuomi, P.N. and L.G. Millennium Genome Project Human Genome Variation Team Leader: Y.N. Millennium Genome Project Diabetes Subteam Leader: M.K.

Corresponding author

Correspondence to Masato Kasuga.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–6, Supplementary Methods (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, K., Miyake, K., Horikawa, Y. et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40, 1092–1097 (2008). https://doi.org/10.1038/ng.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing