Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint


In both yeast and mammals, uncapped telomeres activate the DNA damage response (DDR) and undergo end-to-end fusion1,2. Previous work has shown that the Drosophila HOAP protein, encoded by the caravaggio (cav) gene, is required to prevent telomeric fusions3. Here we show that HOAP-depleted telomeres activate both the DDR and the spindle assembly checkpoint (SAC). The cell cycle arrest elicited by the DDR was alleviated by mutations in mei-41 (encoding ATR), mus304 (ATRIP), grp (Chk1) and rad50 but not by mutations in tefu (ATM). The SAC was partially overridden by mutations in zw10 (also known as mit(1)15) and bubR1, and also by mutations in mei-41, mus304, rad50, grp and tefu. As expected from SAC activation, the SAC proteins Zw10, Zwilch, BubR1 and Cenp-meta (Cenp-E) accumulated at the kinetochores of cav mutant cells. Notably, BubR1 also accumulated at cav mutant telomeres in a mei-41-, mus304-, rad50-, grp- and tefu-dependent manner. Our results collectively suggest that recruitment of BubR1 by dysfunctional telomeres inhibits Cdc20-APC function, preventing the metaphase-to-anaphase transition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: HOAP-depleted telomeres bind BubR1 and activate the SAC.
Figure 2: The frequency of BubR1-labeled telomeres not engaged in telomere fusions is negatively correlated with the anaphase frequency.
Figure 3: A working model depicting how unprotected Drosophila telomeres trigger both the DDR and the SAC response.


  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  Google Scholar 

  2. Lydall, D. Hiding at the ends of yeast chromosomes: telomeres, nucleases and checkpoint pathways. J. Cell Sci. 116, 4057–4065 (2003).

    Article  CAS  Google Scholar 

  3. Cenci, G., Siriaco, G., Raffa, G.D., Kellum, R. & Gatti, M. The Drosophila HOAP protein is required for telomere capping. Nat. Cell Biol. 5, 82–84 (2003).

    Article  CAS  Google Scholar 

  4. Cenci, G., Ciapponi, L. & Gatti, M. The mechanism of telomere protection: a comparison between Drosophila and humans. Chromosoma 114, 135–145 (2005).

    Article  CAS  Google Scholar 

  5. Cenci, G. et al. UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev. 11, 863–875 (1997).

    Article  CAS  Google Scholar 

  6. Fanti, L., Giovinazzo, G., Berloco, M. & Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527–538 (1998).

    Article  CAS  Google Scholar 

  7. Bi, X. et al. Drosophila ATM and ATR checkpoint kinases control partially redundant pathways for telomere maintenance. Proc. Natl. Acad. Sci. USA 102, 15167–15172 (2005).

    Article  CAS  Google Scholar 

  8. Bi, X., Wei, S.C. & Rong, Y.S. Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr. Biol. 14, 1348–1353 (2004).

    Article  CAS  Google Scholar 

  9. Ciapponi, L. et al. The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr. Biol. 14, 1360–1366 (2004).

    Article  CAS  Google Scholar 

  10. Ciapponi, L., Cenci, G. & Gatti, M. The Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability. Genetics 173, 1447–1454 (2006).

    Article  CAS  Google Scholar 

  11. Oikemus, S.R. et al. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev. 18, 1850–1861 (2004).

    Article  CAS  Google Scholar 

  12. Oikemus, S.R. et al. Epigenetic telomere protection by Drosophila DNA damage response pathways. PLoS Genet. 2, e71 (2006).

    Article  Google Scholar 

  13. Silva, E. et al. ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr. Biol. 14, 1341–1347 (2004).

    Article  CAS  Google Scholar 

  14. Song, Y.H., Mirey, G., Betson, M., Haber, D.A. & Settleman, J. The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and to spontaneous DNA damage during development. Curr. Biol. 14, 1354–1359 (2004).

    Article  CAS  Google Scholar 

  15. Raffa, G.D., Cenci, G., Siriaco, G., Goldberg, M.L. & Gatti, M. The putative Drosophila transcription factor woc is required to prevent telomeric fusions. Mol. Cell 20, 821–831 (2005).

    Article  CAS  Google Scholar 

  16. Karess, R. Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol. 15, 386–392 (2005).

    Article  CAS  Google Scholar 

  17. Musacchio, A. & Salmon, E.D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  18. Hari, K.L. et al. The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815–821 (1995).

    Article  CAS  Google Scholar 

  19. Brodsky, M.H., Sekelsky, J.J., Tsang, G., Hawley, R.S. & Rubin, G.M. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 14, 666–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fogarty, P. et al. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7, 418–426 (1997).

    Article  CAS  Google Scholar 

  21. Royou, A., Macias, H. & Sullivan, W. The Drosophila Grp/Chk1 DNA damage checkpoint controls entry into anaphase. Curr. Biol. 15, 334–339 (2005).

    Article  CAS  Google Scholar 

  22. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  Google Scholar 

  23. Williams, B.C., Murphy, T.D., Goldberg, M.L. & Karpen, G.H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat. Genet. 18, 30–37 (1998).

    Article  CAS  Google Scholar 

  24. Heeger, S. et al. Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog. Genes Dev. 19, 2041–2053 (2005).

    Article  CAS  Google Scholar 

  25. Basto, R., Gomes, R. & Karess, R.E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila. Nat. Cell Biol. 2, 939–943 (2000).

    Article  CAS  Google Scholar 

  26. Mikhailov, A., Cole, R.W. & Rieder, C.L. DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint. Curr. Biol. 12, 1797–1806 (2002).

    Article  CAS  Google Scholar 

  27. Miller, K.M. & Cooper, J.P. The telomere protein Taz1 is required to prevent and repair genomic DNA breaks. Mol. Cell 11, 303–313 (2003).

    Article  CAS  Google Scholar 

  28. Maringele, L. & Lydall, D. EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev. 16, 1919–1933 (2002).

    Article  CAS  Google Scholar 

  29. Bentley, A.M., Williams, B.C., Goldberg, M.L. & Andres, A.J. Phenotypic characterization of Drosophila ida mutants: defining the role of APC5 in cell cycle progression. J. Cell Sci. 115, 949–961 (2002).

    CAS  PubMed  Google Scholar 

Download references


We thank M.L. Goldberg, B. Williams, C. Sunkel, C. Lehner, T. Megraw, J. Raff, T. Kaufman and T.T. Su for providing antibodies and Drosophila strains, and M.L. Goldberg for critical comments on the manuscript. This work was supported by grants from the Italian Association for Cancer Research (AIRC) and Telethon to M.G. and by a grant for Progetti di Ricerca di Interesse Nazionale (PRIN) from Ministero dell'Università e Ricerca (MIUR) to G.C.

Author information

Authors and Affiliations



G.C. and M.G. conceived and designed the experiments. M.M. carried out cytological analyses. L.C. and G.C. constructed and partially characterized the double mutants. B.F. performed in vivo imaging. G.C. and M.G. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Giovanni Cenci.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–3 (PDF 3906 kb)

Supplementary Video 1

Visualization of the mitotic division of a wild type neuroblast expressing His2AvDGFP. (AVI 430 kb)

Supplementary Video 2

Visualization of the delayed mitotic division of a cav mutant neuroblast expressing His2AvDGFP. (AVI 879 kb)

Supplementary Video 3

Visualization of the delayed mitotic division of a cav/ Df(3R)crb-F89-4 mutant neuroblast expressing His2AvDGFP. (AVI 571 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Musarò, M., Ciapponi, L., Fasulo, B. et al. Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint. Nat Genet 40, 362–366 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing