Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic evolution of the innate immune system in Drosophila

Abstract

The availability of complete genome sequence from 12 Drosophila species presents the opportunity to examine how natural selection has affected patterns of gene family evolution and sequence divergence among different components of the innate immune system. We have identified orthologs and paralogs of 245 Drosophila melanogaster immune-related genes in these recently sequenced genomes. Genes encoding effector proteins, and to a lesser extent genes encoding recognition proteins, are much more likely to vary in copy number across species than genes encoding signaling proteins. Furthermore, we can trace the apparent recent origination of several evolutionarily novel immune-related genes and gene families. Using codon-based likelihood methods, we show that immune-system genes, and especially those encoding recognition proteins, evolve under positive darwinian selection. Positively selected sites within recognition proteins cluster in domains involved in recognition of microorganisms, suggesting that molecular interactions between hosts and pathogens may drive adaptive evolution in the Drosophila immune system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Variation in patterns of homology among immune-system genes.
Figure 2: Schematic map of the nimrod and eater genes in the 12 Drosophila species.
Figure 3: Variation in positive selection among immune-system genes.
Figure 4: Positive selection in PGRP-LCa.

References

  1. Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Schlenke, T.A. & Begun, D.J. Natural selection drives Drosophila immune system evolution. Genetics 164, 1471–1480 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature doi:10.1038/06341 (published online 8 November 2007).

  4. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Meister, M. & Lagueux, M. Drosophila blood cells. Cell. Microbiol. 5, 573–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Steiner, H. Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev. 198, 83–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hultmark, D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3, 711–722 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Agaisse, H. & Perrimon, N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72–82 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Silverman, N. & Maniatis, T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Evans, C.J., Hartenstein, V. & Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Christophides, G.K. et al. Immunity-related genes and gene families in Anopheles gambiae. Science 298, 159–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Evans, J.D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waterhouse, R.M. et al. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316, 1738–1743 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Markow, T.A. & O'Grady, P.M. Drosophila biology in the genomic age. Genetics doi:10.1534/genetics.107.074112 (in the press).

  17. Hahn, M.W., De Bie, T., Stajich, J.E., Nguyen, C. & Cristianini, N. Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res. 15, 1153–1160 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hultmark, D. Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet. 9, 178–183 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Clark, A.G. & Wang, L. Molecular population genetics of Drosophila immune system genes. Genetics 147, 713–724 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ramos-Onsins, S. & Aguade, M. Molecular evolution of the Cecropin multigene family in Drosophila. functional genes vs. pseudogenes. Genetics 150, 157–171 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kocks, C. et al. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123, 335–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Kurucz, E. et al. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 17, 649–654 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Kurucz, E. et al. Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proc. Natl. Acad. Sci. USA 100, 2622–2627 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramet, M. et al. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15, 1027–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Long, M., Betran, E., Thornton, K. & Wang, W. The origin of new genes: glimpses from the young and old. Nat. Rev. Genet. 4, 865–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Jiggins, F.M. & Kim, K.W. The evolution of antifungal peptides in Drosophila. Genetics 171, 1847–1859 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daibo, S., Kimura, M.T. & Goto, S.G. Upregulation of genes belonging to the drosomycin family in diapausing adults of Drosophila triauraria. Gene 278, 177–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Hotopp, J.C. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317, 1753–1756 (2007).

    Article  Google Scholar 

  29. Bulet, P., Hetru, C., Dimarcq, J.L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  31. Yang, Z., Nielsen, R., Goldman, N. & Pedersen, A.M. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stroschein-Stevenson, S.L., Foley, E., O'Farrell, P.H. & Johnson, A.D. Identification of Drosophila gene products required for phagocytosis of Candida albicans. PLoS Biol. 4, e4 (2006).

    Article  PubMed  Google Scholar 

  34. Philips, J.A., Rubin, E.J. & Perrimon, N. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Blandin, S. & Levashina, E.A. Thioester-containing proteins and insect immunity. Mol. Immunol. 40, 903–908 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Chang, C.I. et al. Structure of the ectodomain of Drosophila peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc. Natl. Acad. Sci. USA 102, 10279–10284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang, C.I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science 311, 1761–1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, Z., Wong, W.S. & Nielsen, R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22, 1107–1118 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H. & Hultmark, D. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem. 278, 26319–26322 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Begun, D.J. & Whitley, P. Adaptive evolution of relish, a Drosophila NF-kappaB/IkappaB protein. Genetics 154, 1231–1238 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol. 15, 568–573 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Levine, M.T. & Begun, D.J. Comparative population genetics of the immunity gene, Relish: is adaptive evolution idiosyncratic? PLoS ONE 2, e442 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stoven, S. et al. Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc. Natl. Acad. Sci. USA 100, 5991–5996 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Little, T.J. & Cobbe, N. The evolution of immune-related genes from disease carrying mosquitoes: diversity in a peptidoglycan- and a thioester-recognizing protein. Insect Mol. Biol. 14, 599–605 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Little, T.J., Colbourne, J.K. & Crease, T.J. Molecular evolution of daphnia immunity genes: polymorphism in a gram-negative binding protein gene and an alpha-2-macroglobulin gene. J. Mol. Evol. 59, 498–506 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Bulmer, M.S. & Crozier, R.H. Variation in positive selection in termite GNBPs and Relish. Mol. Biol. Evol. 23, 317–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Lazzaro, B.P. & Clark, A.G. Molecular population genetics of inducible antibacterial peptide genes in Drosophila melanogaster. Mol. Biol. Evol. 20, 914–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Tennessen, J.A. Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection. J. Evol. Biol. 18, 1387–1394 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. De Bie, T., Cristianini, N., Demuth, J.P. & Hahn, M.W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (A.G.C. and B.P.L.); the National Sciences Foundation (B.P.L.); and the Swedish Foundation for Strategic Research, the Wallenberg Consortium North and the Swedish Research Council (D.H.). T.B.S. is a Howard Hughes Predoctoral Fellow.

Author information

Authors and Affiliations

Authors

Contributions

T.B.S. and A.G.C. designed this study; T.B.S., B.P.L., T.A.S., J.D.E., D.H., and A.G.C. generated the data and analyzed the results; T.B.S. wrote this paper; B.P.L., T.A.S., J.D.E., D.H., and A.G.C. contributed to the writing and editing of this paper.

Corresponding author

Correspondence to Timothy B Sackton.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sackton, T., Lazzaro, B., Schlenke, T. et al. Dynamic evolution of the innate immune system in Drosophila. Nat Genet 39, 1461–1468 (2007). https://doi.org/10.1038/ng.2007.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2007.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing