Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms

Abstract

Kawasaki disease is a pediatric systemic vasculitis of unknown etiology for which a genetic influence is suspected. We identified a functional SNP (itpkc_3) in the inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) gene on chromosome 19q13.2 that is significantly associated with Kawasaki disease susceptibility and also with an increased risk of coronary artery lesions in both Japanese and US children. Transfection experiments showed that the C allele of itpkc_3 reduces splicing efficiency of the ITPKC mRNA. ITPKC acts as a negative regulator of T-cell activation through the Ca2+/NFAT signaling pathway, and the C allele may contribute to immune hyper-reactivity in Kawasaki disease. This finding provides new insights into the mechanisms of immune activation in Kawasaki disease and emphasizes the importance of activated T cells in the pathogenesis of this vasculitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of SNP screening of chromosome 19 and structure of the linkage disequilibrium (LD) block in Japanese individuals showing SNPs significantly associated with Kawasaki disease.
Figure 2: Comparison of relative mRNA expression of ITPKC in different tissues and cell lines.
Figure 3: Allele-specific transcript quantification of ITPKC in PBMC.
Figure 4: Negative regulatory role of ITPKC expression in stimulated Jurkat cells.
Figure 5: Reduced splicing efficiency of intron 1 and reduced ITPKC transcript abundance mediated by the itpkc_3 C allele.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kawasaki, T. Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes: my clinical observation (in Japanese). Jpn. J. Allergy 16, 178–222 (1967). English translation by Shike, H., Burns, J.C. & Shimizu, C. Pediatr. Infect. Dis. J. 21, 993–995 (2002).

    CAS  Google Scholar 

  2. Kato, H., Koike, S., Yamamoto, M., Ito, Y. & Yano, E. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J. Pediatr. 86, 892–898 (1975).

    Article  CAS  Google Scholar 

  3. Kato, H. et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation 94, 1379–1385 (1996).

    Article  CAS  Google Scholar 

  4. Cook, D.H. et al. Results from an international survey of Kawasaki disease in 1979–82. Can. J. Cardiol. 5, 389–394 (1989).

    CAS  PubMed  Google Scholar 

  5. Fujita, Y. et al. Kawasaki disease in families. Pediatrics 84, 666–669 (1989).

    CAS  PubMed  Google Scholar 

  6. Uehara, R., Yashiro, M., Nakamura, Y. & Yanagawa, H. Kawasaki disease in parents and children. Acta Paediatr. 92, 694–697 (2003).

    Article  CAS  Google Scholar 

  7. Dergun, M. et al. Familial occurrence of Kawasaki syndrome in North America. Arch. Pediatr. Adolesc. Med. 159, 876–881 (2005).

    Article  Google Scholar 

  8. Onouchi, Y. et al. A genome-wide linkage analysis for Kawasaki disease: evidence for linkage to chromosome 12. J. Hum. Genet. 52, 179–190 (2007).

    Article  CAS  Google Scholar 

  9. Imboden, J.B. & Pattison, G. Regulation of inositol 1,4,5-trisphosphate kinase activity after stimulation of human T cell antigen receptor. J. Clin. Invest. 79, 1538–1541 (1987).

    Article  CAS  Google Scholar 

  10. Dewaste, V. et al. Cloning and expression of a cDNA encoding human inositol 1,4,5-trisphosphate 3-kinase C. Biochem. J. 352, 343–351 (2000).

    Article  CAS  Google Scholar 

  11. Berridge, M.J. & Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321 (1984).

    Article  CAS  Google Scholar 

  12. Harnick, D.J. et al. The human type 1 inositol 1,4,5-trisphosphate receptor from T lymphocytes. Structure, localization, and tyrosine phosphorylation. J. Biol. Chem. 270, 2833–2840 (1995).

    Article  CAS  Google Scholar 

  13. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  14. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    Article  CAS  Google Scholar 

  15. Cogan, J.D. et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum. Mol. Genet. 6, 909–912 (1997).

    Article  CAS  Google Scholar 

  16. von Ahsen, N. & Oellerich, M. The intronic prothrombin 19911A>G polymorphism influences splicing efficiency and modulates effects of the 20210G>A polymorphism on mRNA amount and expression in a stable reporter gene assay system. Blood 103, 586–593 (2004).

    Article  CAS  Google Scholar 

  17. Morisaki, H., Morisaki, T., Newby, L.K. & Holmes, E.W. Alternative splicing: a mechanism for phenotypic rescue of a common inherited defect. J. Clin. Invest. 91, 2275–2280 (1993).

    Article  CAS  Google Scholar 

  18. Krawczak, M. et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum. Mutat. 28, 150–158 (2007).

    Article  CAS  Google Scholar 

  19. Krawczak, M., Reiss, J. & Cooper, D.N. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum. Genet. 90, 41–54 (1992).

    Article  CAS  Google Scholar 

  20. Majewski, J. & Ott, J. Distribution and characterization of regulatory elements in the human genome. Genome Res. 12, 1827–1836 (2002).

    Article  CAS  Google Scholar 

  21. Yeo, G., Hoon, S., Venkatesh, B. & Burge, C.B. Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc. Natl. Acad. Sci. USA 101, 15700–15705 (2004).

    Article  CAS  Google Scholar 

  22. Louie, E., Ott, J. & Majewski, J. Nucleotide frequency variation across human genes. Genome Res. 13, 2594–2601 (2003).

    Article  CAS  Google Scholar 

  23. McCullough, A.J. & Berget, S.M. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 17, 4562–4571 (1997).

    Article  CAS  Google Scholar 

  24. Buratti, E. & Baralle, F.E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol. 24, 10505–10514 (2004).

    Article  CAS  Google Scholar 

  25. Varani, L. et al. Structure of tau exon 10 splicing regulatory element RNA and destabilization by mutations of frontotemporal dementia and parkinsonism linked to chromosome 17. Proc. Natl. Acad. Sci. USA 96, 8229–8234 (1999).

    Article  CAS  Google Scholar 

  26. Yoshioka, T. et al. Polyclonal expansion of TCRBV2- and TCRBV6-bearing T cells in patients with Kawasaki disease. Immunology 96, 465–472 (1999).

    Article  CAS  Google Scholar 

  27. Brown, T.J. et al. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J. Infect. Dis. 184, 940–943 (2001).

    Article  CAS  Google Scholar 

  28. Fukunishi, M. et al. Prediction of non-responsiveness to intravenous high-dose gamma-globulin therapy in patients with Kawasaki disease at onset. J. Pediatr. 137, 172–176 (2000).

    Article  CAS  Google Scholar 

  29. Egami, K. et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J. Pediatr. 149, 237–240 (2006).

    Article  CAS  Google Scholar 

  30. Sano, T. et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur. J. Pediatr. 166, 131–137 (2007).

    Article  CAS  Google Scholar 

  31. Kobayashi, T. et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 113, 2606–2612 (2006).

    Article  Google Scholar 

  32. Ho, S. et al. The mechanism of action of cyclosporin A and FK506. Clin. Immunol. Immunopathol. 80, S40–S45 (1996).

    Article  CAS  Google Scholar 

  33. Raman, V., Kim, J., Sharkey, A. & Chatila, T. Response of refractory Kawasaki disease to pulse steroid and cyclosporin A therapy. Pediatr. Infect. Dis. J. 20, 635–637 (2001).

    Article  CAS  Google Scholar 

  34. Lewis, R. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  Google Scholar 

  35. Ayusawa, M. et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr. Int. 47, 232–234 (2005).

    Article  Google Scholar 

  36. Burns, J.C. et al. Family-based association analysis implicates IL-4 in susceptibility to Kawasaki disease. Genes Immun. 6, 438–444 (2005).

    Article  CAS  Google Scholar 

  37. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  Google Scholar 

  38. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kazeem, G.R. & Farrall, M. Integrating case-control and TDT studies. Ann. Hum. Genet. 69, 329–335 (2005).

    Article  CAS  Google Scholar 

  40. Uejima, H., Lee, M.P., Cui, H. & Feinberg, A.P. Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat. Genet. 25, 375–376 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the individuals with Kawasaki disease and their families who participated in this project. We are grateful to H. Aotsuka, H. Nakajima, F. Kudo, M. Miura, K. Akagi, T. Matsubara, M. Nishibatake, S. Oku, K. Sameshima, Y. Tanaka, Y. Nomura, S. Ogita, M. Sakauchi, T. Isobe, T. Sano, T. Matsushita and other physicians who contributed DNA samples. We thank J. Pancheri and A. Baker for collection of DNA samples and D. Scherrer, H. Sugiyama and M. Saito for technical assistance. This work was supported by grants from the Japanese Millennium Project, from the Japan Society for the Promotion of Science (16591069 to Y.O.) and from the National Heart, Lung, Blood Institute of the National Institutes of Health (HL69413 to J.C.B.).

Author information

Authors and Affiliations

Authors

Contributions

Y.O., A.H. and Yusuke N. designed the study. Y.O., J.C.B., C.S., J.W.N., F.K., K.H., M.T., Y.S., K.O., T.S., A.N., Y.K., T.Y., K.S., Takeo T., T.N., H.C. and A.F. collected most of the samples. M.Y., Yoshikazu N., H.Y. and T.K. provided information regarding the Japanese nation-wide survey of Kawasaki disease. K.W. and Y.F. established lymphoblastoid cell lines of individuals with Kawasaki disease. Tatsuhiko T. and A.S. supported the initial SNP screening by providing genotyping data for the control population. Y.O. performed genotyping and statistical analyses. R.N. and Tatsuhiko T. performed logistic regression analyses. Y.O. and T.G. performed functional assays. Y.O., J.C.B., C.S., J.W.N. and A.H. wrote the paper.

Corresponding author

Correspondence to Yoshihiro Onouchi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3, Supplementary Methods (PDF 3090 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onouchi, Y., Gunji, T., Burns, J. et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 40, 35–42 (2008). https://doi.org/10.1038/ng.2007.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2007.59

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing