Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two independent alleles at 6q23 associated with risk of rheumatoid arthritis


To identify susceptibility alleles associated with rheumatoid arthritis, we genotyped 397 individuals with rheumatoid arthritis for 116,204 SNPs and carried out an association analysis in comparison to publicly available genotype data for 1,211 related individuals from the Framingham Heart Study1. After evaluating and adjusting for technical and population biases, we identified a SNP at 6q23 (rs10499194, 150 kb from TNFAIP3 and OLIG3) that was reproducibly associated with rheumatoid arthritis both in the genome-wide association (GWA) scan and in 5,541 additional case-control samples (P = 10−3, GWA scan; P < 10−6, replication; P = 10−9, combined). In a concurrent study, the Wellcome Trust Case Control Consortium (WTCCC) has reported strong association of rheumatoid arthritis susceptibility to a different SNP located 3.8 kb from rs10499194 (rs6920220; P = 5 × 10−6 in WTCCC)2. We show that these two SNP associations are statistically independent, are each reproducible in the comparison of our data and WTCCC data, and define risk and protective haplotypes for rheumatoid arthritis at 6q23.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Q-Q plots of GWA analyses in unrelated individuals: influence of missing genotype data and population stratification.
Figure 2: Case-control association results and linkage disequilibrium (LD) structure at 6q23.
Figure 3: Haplotype analysis in our replication samples and in the WTCCC study of 2,000 individuals with rheumatoid arthritis and 3,000 controls.


  1. Herbert, A. et al. A common genetic variant is associated with adult and childhood obesity. Science 312, 279–283 (2006).

    Article  CAS  Google Scholar 

  2. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  3. Silman, A.J. & Pearson, J.E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 4 (Suppl. 3), S265–S272 (2002).

    Article  Google Scholar 

  4. Irigoyen, P. et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 52, 3813–3818 (2005).

    Article  CAS  Google Scholar 

  5. Begovich, A.B. et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am. J. Hum. Genet. 75, 330–337 (2004).

    Article  CAS  Google Scholar 

  6. Clayton, D.G. et al. Population structure, differential bias and genomic control in a large-scale, case-control association study. Nat. Genet. 37, 1243–1246 (2005).

    Article  CAS  Google Scholar 

  7. Freedman, M.L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388–393 (2004).

    Article  CAS  Google Scholar 

  8. Marchini, J., Cardon, L.R., Phillips, M.S. & Donnelly, P. The effects of human population structure on large genetic association studies. Nat. Genet. 36, 512–517 (2004).

    Article  CAS  Google Scholar 

  9. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  10. Purcell, S. et al. PLINK: a toolset for whole genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  Google Scholar 

  11. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  12. Stolt, P. et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann. Rheum. Dis. 62, 835–841 (2003).

    Article  CAS  Google Scholar 

  13. Jawaheer, D., Lum, R.F., Amos, C.I., Gregersen, P.K. & Criswell, L.A. Clustering of disease features within 512 multicase rheumatoid arthritis families. Arthritis Rheum. 50, 736–741 (2004).

    Article  Google Scholar 

  14. de Bakker, P.I. et al. Efficiency and power in genetic association studies. Nat. Genet. 37, 1217–1223 (2005).

    Article  CAS  Google Scholar 

  15. Graham, R.R. et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc. Natl. Acad. Sci. USA 104, 6758–6763 (2007).

    Article  CAS  Google Scholar 

  16. Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  Google Scholar 

  17. Haiman, C.A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat. Genet. 39, 638–644 (2007).

    Article  CAS  Google Scholar 

  18. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  19. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet. 39, 631–637 (2007).

    Article  CAS  Google Scholar 

  20. Maller, J. et al. Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat. Genet. 38, 1055–1059 (2006).

    Article  CAS  Google Scholar 

  21. Opipari, A.W. Jr., Boguski, M.S. & Dixit, V.M. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem. 265, 14705–14708 (1990).

    CAS  PubMed  Google Scholar 

  22. Elliott, M.J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  Google Scholar 

  23. Lee, E.G. et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  Google Scholar 

  24. Muller, T. et al. The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes Dev. 19, 733–743 (2005).

    Article  Google Scholar 

  25. Sato, M. et al. The validity of a rheumatoid arthritis medical records-based index of severity compared with the DAS28. Arthritis Res. Ther. 8, R57 (2006).

    Article  Google Scholar 

  26. Mitchell, M.K., Gregersen, P.K., Johnson, S., Parsons, R. & Vlahov, D. The New York Cancer Project: rationale, organization, design, and baseline characteristics. J. Urban Health 81, 301–310 (2004).

    Article  Google Scholar 

  27. Seldin, M.F. et al. European population substructure: clustering of northern and southern populations. PLoS Genet. 2, e143 (2006).

    Article  Google Scholar 

  28. Purcell, S., Daly, M.J. & Sham, P.C. WHAP: haplotype-based association analysis. Bioinformatics 23, 255–256 (2007).

    Article  CAS  Google Scholar 

Download references


The Framingham Heart Study is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with Boston University. This manuscript was not prepared in collaboration with investigators of the Framingham Heart Study and does not necessarily reflect the opinions or views of the Framingham Heart Study, Boston University or NHLBI. We appreciate the comments provided by B. Voight and J. Hirschhorn during the preparation of the manuscript. We appreciate the release of genome-wide association results by the WTCCC, which was of great value to our analysis. The BRASS Registry is supported by a grant from Millennium Pharmaceuticals and Biogen-Idec. R.M.P. is supported by a K08 grant from the US National Institutes of Health (AI55314-3). The NARAC is supported by US National Institutes of Health grants RO1-AR44422 and NO1-AR-2-2263 (P.K.G.). This work was also supported in part by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health. The EIRA study is supported by grants from the Swedish Medical Research Council, the Swedish Council for Working Life and Social Research, King Gustaf V's 80-Year Foundation, the Swedish Rheumatic Foundation, the Stockholm County Council, the insurance company Arbetsmarknadens Försäkringsaktiebolag and the County of Sörmland Research and Development Center. D.A. is a Burroughs Wellcome Fund Clinical Scholar in Translational Research and a Distinguished Clinical Scholar of the Doris Duke Charitable Foundation.

Author information

Authors and Affiliations



Clinical samples were collected and prepared by R.M.P., E.W.K., N.M., D.M.L., E.F.R., A.T.L., L.P., L.A., J.C., M.E.W., L.K., P.K.G. and N.A.S. Genotyping was contributed by R.M.P., L.D., N.P.B., B.B., M.D., M.P., R.B., W.W., C.H., D.A.H., S.B.G., M.F.S., E.I., R.R. and A.N.P. Statistical analysis was carried out and interpreted by R.M.P., C.C., L.D., A.L.P., P.I.W.D., J.M., I.P., R.R.G., R.G., S.P., M.J.D. and D.A. The manuscript was written by R.M.P., C.C., M.J.D. and D.A.

Corresponding author

Correspondence to Robert M Plenge.

Ethics declarations

Competing interests

R.R., A.N.P. and E.I. were employed by Millennium Pharmaceuticals at the time the study was conducted.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–4, Supplementary Tables 1–3 (PDF 342 kb)

Supplementary Information (XLS 199 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Plenge, R., Cotsapas, C., Davies, L. et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39, 1477–1482 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing