Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos

Abstract

In blastocyst chimeras, embryonic stem (ES) cells contribute to embryonic tissues but not extraembryonic trophectoderm. Conditional activation of HRas1Q61L in ES cells in vitro induces the trophectoderm marker Cdx2 and enables derivation of trophoblast stem (TS) cell lines that, when injected into blastocysts, chimerize placental tissues. Erk2, the downstream effector of Ras–mitogen-activated protein kinase (MAPK) signaling, is asymmetrically expressed in the apical membranes of the 8-cell-stage embryo just before morula compaction. Inhibition of MAPK signaling in cultured mouse embryos compromises Cdx2 expression, delays blastocyst development and reduces trophectoderm outgrowth from embryo explants. These data show that ectopic Ras activation can divert ES cells toward extraembryonic trophoblastic fates and implicate Ras-MAPK signaling in promoting trophectoderm formation from mouse embryos.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Induction of activated Ras expression promotes formation of trophoblastic tumors from ES cells.
Figure 2: Trophoblastic stem cell establishment from iRasES cells.
Figure 3: Expression of Cdx2, Nanog and Oct4 in response to Ras-MAPK signaling in ES cells.
Figure 4: Ras-MAPK signaling regulates Cdx2 expression and trophoblast outgrowth in mouse embryos.

References

  1. Nagy, A. et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 110, 815–821 (1990).

    CAS  Google Scholar 

  2. Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  Google Scholar 

  3. Kunath, T. et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 132, 1649–1661 (2005).

    Article  CAS  Google Scholar 

  4. Land, H., Parada, L.F. & Weinberg, R.A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  Google Scholar 

  5. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  6. Kyba, M., Perlingeiro, R.C. & Daley, G.Q. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37 (2002).

    Article  CAS  Google Scholar 

  7. Klucher, K.M., Lopez, D.V. & Daley, G.Q. Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 91, 3927–3934 (1998).

    CAS  PubMed  Google Scholar 

  8. Simmons, D.G. & Cross, J.C. Determinants of trophoblast lineage and cell subtype specification in the mouse placenta. Dev. Biol. 284, 12–24 (2005).

    Article  CAS  Google Scholar 

  9. Katsuki, M. et al. Embryonal tumors from transgenic mouse zygotes carrying human activated c-Ha-ras genes. Mol. Biol. Med. 6, 567–572 (1989).

    CAS  PubMed  Google Scholar 

  10. Zaehres, H. et al. High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23, 299–305 (2005).

    Article  CAS  Google Scholar 

  11. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391 (1998).

    Article  CAS  Google Scholar 

  12. Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

    Article  CAS  Google Scholar 

  13. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  14. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  Google Scholar 

  15. Takahashi, K., Mitsui, K. & Yamanaka, S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423, 541–545 (2003).

    Article  CAS  Google Scholar 

  16. Burdon, T., Chambers, I., Stracey, C., Niwa, H. & Smith, A. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs 165, 131–143 (1999).

    Article  CAS  Google Scholar 

  17. Hamatani, T., Carter, M.G., Sharov, A.A. & Ko, M.S. Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131 (2004).

    Article  CAS  Google Scholar 

  18. Maekawa, M. et al. Requirement of the MAP kinase signaling pathways for mouse preimplantation development. Development 132, 1773–1783 (2005).

    Article  CAS  Google Scholar 

  19. Maekawa, M., Yamamoto, T., Kohno, M., Takeichi, M. & Nishida, E. Requirement for ERK MAP kinase in mouse preimplantation development. Development 134, 2751–2759 (2007).

    Article  CAS  Google Scholar 

  20. Cheng, A.M. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793–803 (1998).

    Article  CAS  Google Scholar 

  21. Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615–624 (2006).

    Article  CAS  Google Scholar 

  22. Auman, H.J. et al. Transcription factor AP-2γ is essential in the extra-embryonic lineages for early postimplantation development. Development 129, 2733–2747 (2002).

    CAS  PubMed  Google Scholar 

  23. Saba-El-Leil, M.K. et al. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep. 4, 964–968 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  24. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  Google Scholar 

  25. Piotrowska-Nitsche, K., Perea-Gomez, A., Haraguchi, S. & Zernicka-Goetz, M. Four-cell stage mouse blastomeres have different developmental properties. Development 132, 479–490 (2005).

    Article  CAS  Google Scholar 

  26. Johnson, M.H. & Ziomek, C.A. Induction of polarity in mouse 8-cell blastomeres: specificity, geometry, and stability. J. Cell Biol. 91, 303–308 (1981).

    Article  CAS  Google Scholar 

  27. Sutherland, A.E., Speed, T.P. & Calarco, P.G. Inner cell allocation in the mouse morula: the role of oriented division during fourth cleavage. Dev. Biol. 137, 13–25 (1990).

    Article  CAS  Google Scholar 

  28. Rajalingam, K. et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat. Cell Biol. 7, 837–843 (2005).

    Article  CAS  Google Scholar 

  29. De Vries, W.N. et al. Maternal β-catenin and E-cadherin in mouse development. Development 131, 4435–4445 (2004).

    Article  CAS  Google Scholar 

  30. Plusa, B. et al. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. J. Cell Sci. 118, 505–515 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the US National Institutes of Health and the NIH Director's Pioneer Award of the NIH Roadmap for Medical Research. G.Q.D. is a recipient of the Burroughs Wellcome Fund Clinical Scientist Award in Translational Research. We are grateful to J. Rossant (Hospital for Sick Children, University of Toronto, Canada) for providing TS cells and experimental advice and for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.-W.L. designed and executed experiments and wrote the manuscript. A.Y., L.C., S.V. and K.K. executed experiments, contributed reagents, and edited the manuscript. G.Q.D. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to George Q Daley.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2, Supplementary Figures 1–4 and Supplementary Note (PDF 709 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, CW., Yabuuchi, A., Chen, L. et al. Ras-MAPK signaling promotes trophectoderm formation from embryonic stem cells and mouse embryos. Nat Genet 40, 921–926 (2008). https://doi.org/10.1038/ng.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.173

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing