Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy

A Corrigendum to this article was published on 01 July 2008

This article has been updated


Digital clubbing, recognized by Hippocrates in the fifth century BC, is the outward hallmark of pulmonary hypertrophic osteoarthropathy, a clinical constellation that develops secondary to various acquired diseases, especially intrathoracic neoplasm1. The pathogenesis of clubbing and hypertrophic osteoarthropathy has hitherto been poorly understood, but a clinically indistinguishable primary (idiopathic) form of hypertrophic osteoarthropathy (PHO) is recognized2,3. This familial disorder can cause diagnostic confusion, as well as significant disability. By autozygosity methods, we mapped PHO to chromosome 4q33–q34 and identified mutations in HPGD, encoding 15-hydroxyprostaglandin dehydrogenase, the main enzyme of prostaglandin degradation. Homozygous individuals develop PHO secondary to chronically elevated prostaglandin E2 levels. Heterozygous relatives also show milder biochemical and clinical manifestations. These findings not only suggest therapies for PHO, but also imply that clubbing secondary to other pathologies may be prostaglandin mediated. Testing for HPGD mutations and biochemical testing for HPGD deficiency in patients with unexplained clubbing might help to obviate extensive searches for occult pathology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Clinical features of inbred families with PHO.
Figure 2: Localization of the PHO gene on chromosome 4q.
Figure 3: Characterization of the HPGD A140P mutant.
Figure 4: Abnormal prostaglandin metabolism in individuals with PHO.

Change history

  • 26 June 2008

    In the version of this article initially published, Figure 3a—d and Supplementary Figure 2a—c show 16-OH PGE2, not 15-OH PGE2. The errors have been corrected in the HTML and PDF versions of the article.


  1. Coury, C. Hippocratic fingers and hypertrophic osteoarthropathy. A study of 350 cases. Br. J. Dis. Chest 54, 202–209 (1960).

    Article  CAS  Google Scholar 

  2. Castori, M. et al. Pachydermoperiostosis: an update. Clin. Genet. 68, 477–486 (2005).

    Article  CAS  Google Scholar 

  3. Touraine, A., Solente, G. & Gole, L. Un syndrome osteodermopathique: la pachydermie plicaturee avec pachyperiostose des extremites. Presse Med. 43, 1820–1824 (1935).

    Google Scholar 

  4. West, S. Two cases of clubbing of the fingers developing within a fortnight and four weeks, respectively, with remarks. Trans. Clin. Soc. London 30, 60–64 (1897).

    Google Scholar 

  5. Currarino, G., Tierney, R.C., Giesel, R.G. & Weihl, C. Familial idiopathic osteoarthropathy. Am. J. Roentgenol. Radium Ther. Nucl. Med. 85, 633–644 (1961).

    CAS  PubMed  Google Scholar 

  6. Dabir, T. et al. Cranio-osteoarthropathy in sibs. Clin. Dysmorphol. 16, 197–201 (2007).

    Article  Google Scholar 

  7. Forslund, T., Nyberg, A., Janne, S. & Viljanen, B. Hypertrophic osteoarthropathy and familial digital clubbing in a patient with surgical closed ductus arteriosus Botalli. Scand. J. Rheumatol. 16, 371–373 (1987).

    Article  CAS  Google Scholar 

  8. Martinez-Lavin, M., Pineda, C., Navarro, C., Buendia, A. & Zabal, C. Primary hypertrophic osteoarthropathy: another heritable disorder associated with patent ductus arteriosus. Pediatr. Cardiol. 14, 181–182 (1993).

    Article  CAS  Google Scholar 

  9. Joseph, B. & Chacko, V. Acro-osteolysis associated with hypertrophic pulmonary osteoarthropathy and pachydermoperiostosis. Radiology 154, 343–344 (1985).

    Article  CAS  Google Scholar 

  10. Tai, H.-H., Ensor, C.M., Tong, M., Zhou, H. & Yan, F. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat. 68–69, 483–493 (2002).

    Article  Google Scholar 

  11. Murphey, L.J. et al. Quantification of the major urinary metabolite of PGE2 by a liquid chromatographic/mass spectrometric assay: determination of cyclooxygenase-specific PGE2 synthesis in healthy humans and those with lung cancer. Anal. Biochem. 334, 266–275 (2004).

    Article  CAS  Google Scholar 

  12. Chang, D.G. & Tai, H.-H. Prostaglandin 9-ketoreductase/type II 15-hydroxyprostaglandin dehydrogenase is not a prostaglandin specific enzyme. Biochem. Biophys. Res. Commun. 101, 898–904 (1981).

    Article  CAS  Google Scholar 

  13. Tokumoto, H., Watanabe, K., Fukushima, D., Shimizu, T. & Hayaishi, O. An NADP-linked 15-hydroxyprostaglandin dehydrogenase specific for prostaglandin D2 from swine brain. J. Biol. Chem. 257, 13576–13580 (1982).

    CAS  PubMed  Google Scholar 

  14. Pilbeam, C. & Raisz, L. Prostaglandins, leukotrienes and bone. in The Eicosanoids (ed. Curtis-Prior, P.) 289–298 (Wiley, Chichester, UK, 2004).

    Chapter  Google Scholar 

  15. Martinez-Lavin, M. Digital clubbing and hypertrophic osteoarthropathy: a unifying hypothesis. J. Rheumatol. 14, 6–8 (1987).

    CAS  PubMed  Google Scholar 

  16. Dickinson, C.J. & Martin, J.F. Megakaryocytes and platelet clumps as the cause of finger clubbing. Lancet 2, 1434–1435 (1987).

    Article  CAS  Google Scholar 

  17. Ferreira, S.H. & Vane, J.R. Prostaglandins: their disappearance from and release into the circulation. Nature 216, 868–873 (1967).

    Article  CAS  Google Scholar 

  18. Currie, A.E. & Gallagher, P.J. The pathology of clubbing: vascular changes in the nail bed. Br. J. Dis. Chest 82, 382–385 (1988).

    Article  CAS  Google Scholar 

  19. Coggins, K.G. et al. Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nat. Med. 8, 91–92 (2002).

    Article  CAS  Google Scholar 

  20. Ueda, K. et al. Cortical hyperostosis following long-term administration of prostaglandin E1 in infants with cyanotic congenital heart disease. J. Pediatr. 97, 834–836 (1980).

    Article  CAS  Google Scholar 

  21. Cattral, M.S., Altraif, I., Greig, P.D., Blendis, L. & Levy, G.A. Toxic effects of intravenous and oral prostaglandin E therapy in patients with liver disease. Am. J. Med. 97, 369–373 (1994).

    Article  CAS  Google Scholar 

  22. Backlund, M.G. et al. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem. 280, 3217–3223 (2005).

    Article  CAS  Google Scholar 

  23. Ding, Y., Tong, M., Liu, S., Moscow, J.A. & Tai, H.H. NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis 26, 65–72 (2005).

    Article  CAS  Google Scholar 

  24. Myung, S.J. et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl. Acad. Sci. USA 103, 12098–12102 (2006).

    Article  CAS  Google Scholar 

  25. Lemen, R.J. et al. Relationships among digital clubbing, disease severity, and serum prostaglandins F2α and E concentrations in cystic fibrosis patients. Am. Rev. Respir. Dis. 117, 639–646 (1978).

    CAS  PubMed  Google Scholar 

  26. Sinha, G.P. et al. Pachydermoperiostosis in childhood. Br. J. Rheumatol. 36, 1224–1227 (1997).

    Article  CAS  Google Scholar 

  27. Latos-Bieleńska, A. et al. Pachydermoperiostosis–critical analysis with report of five unusual cases. Eur. J. Pediatr. 166, 1237–1243 (2007).

    Article  Google Scholar 

  28. Carr, I.M., Flintoff, K.J., Taylor, G.R., Markham, A.F. & Bonthron, D.T. Interactive visual analysis of SNP data for rapid autozygosity mapping in consanguineous families. Hum. Mutat. 27, 1041–1046 (2006).

    Article  Google Scholar 

  29. Cho, H. et al. Role of glutamine 148 of human 15-hydroxyprostaglandin dehydrogenase in catalytic oxidation of prostaglandin E2. Bioorg. Med. Chem. 14, 6486–6491 (2006).

    Article  CAS  Google Scholar 

  30. Jung, A. et al. 15-Hydroxyprostaglandin dehydrogenase from human placenta. 1. Isolation and characterization [in German with English abstract]. Hoppe Seylers Z. Physiol. Chem. 356, 787–798 (1975).

    Article  CAS  Google Scholar 

Download references


This study was supported by the UK Medical Research Council (Clinical Research Training Fellowship to S.U.) and Cancer Research UK.

Author information

Authors and Affiliations



S.U. and I.M.C. performed genetic mapping and mutation analysis. C.P.D. prepared and assayed recombinant HPGD and performed urine prostaglandin measurements. C.W.G.F. and S.E.V.P. performed structural analysis. S.U., M.A., G.H.I., P.S.H., A.L.-B. and C.P.B. identified subjects with PHO and performed clinical studies. A.F.M., C.P.B. and D.T.B. designed and supervised the project. D.T.B. wrote the manuscript.

Corresponding author

Correspondence to David T Bonthron.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–2 and Supplementary Note (PDF 6347 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uppal, S., Diggle, C., Carr, I. et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat Genet 40, 789–793 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing