Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer

Abstract

Gastric cancer is classified into intestinal and diffuse types, the latter including a highly malignant form, linitis plastica. A two-stage genome-wide association study (stage 1: 85,576 SNPs on 188 cases and 752 references; stage 2: 2,753 SNPs on 749 cases and 750 controls) in Japan identified a significant association between an intronic SNP (rs2976392) in PSCA (prostate stem cell antigen) and diffuse-type gastric cancer (allele-specific odds ratio (OR) = 1.62, 95% CI = 1.38–1.89, P = 1.11 × 10−9). The association was far less significant in intestinal-type gastric cancer. We found that PSCA is expressed in differentiating gastric epithelial cells, has a cell-proliferation inhibition activity in vitro and is frequently silenced in gastric cancer. Substitution of the C allele with the risk allele T at a SNP in the first exon (rs2294008, which has r2 = 0.995, D′ = 0.999 with rs2976392) reduces transcriptional activity of an upstream fragment of the gene. The same risk allele was also significantly associated with diffuse-type gastric cancer in 457 cases and 390 controls in Korea (allele-specific OR = 1.90, 95% CI = 1.56–2.33, P = 8.01 × 10−11). The polymorphism of the PSCA gene, which is possibly involved in regulating gastric epithelial-cell proliferation, influences susceptibility to diffuse-type gastric cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: LD analyses of the SNPs in the genomic region around PSCA.
Figure 2: Expression of PSCA in the gastric epithelium.
Figure 3: Cell-growth inhibition activity of PSCA and the regulation of the PSCA promoter activity by SNP in the upstream region of the gene.

References

  1. 1

    Crew, K.D. & Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol. 12, 354–362 (2006).

    Article  Google Scholar 

  2. 2

    Ushijima, T. & Sasako, M. Focus on gastric cancer. Cancer Cell 5, 121–125 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    CAS  Article  Google Scholar 

  4. 4

    Hohenberger, P. & Gretschel, S. Gastric cancer. Lancet 362, 305–315 (2003).

    Article  Google Scholar 

  5. 5

    Saito, A., Shimoda, T., Nakanishi, Y., Ochiai, A. & Toda, G. Histologic heterogeneity and mucin phenotypic expression in early gastric cancer. Pathol. Int. 51, 165–171 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Machado, J.C. et al. E-cadherin gene mutations provide a genetic basis for the phenotypic divergence of mixed gastric carcinomas. Lab. Invest. 79, 459–465 (1999).

    CAS  PubMed  Google Scholar 

  7. 7

    Schier, S. & Wright, N.A. Stem cell relationships and the origin of gastrointestinal cancer. Oncology 69 (Suppl. 1), 9–13 (2005).

    Article  Google Scholar 

  8. 8

    Rosai, J. in Rosai and Ackerman's Surgical Pathology, Ch. 11, Gastrointestinal tract—stomach 648–711 (Mosby, Edinburgh, 2004).

    Google Scholar 

  9. 9

    Japanese Gastric Cancer Association Registration Committee. Gastric cancer treated in 1991 in Japan: data analysis of nationwide registry. Gastric Cancer 9, 51–66 (2006).

  10. 10

    Yokota, T. et al. Borrmann's type IV gastric cancer: clinicopathologic analysis. Can. J. Surg. 42, 371–376 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Henson, D.E., Dittus, C., Younes, M., Nguyen, H. & Albores-Saavedra, J. Differential trend in the intestinal and diffuse types of gastric carcinoma in United States, 1973–2000 – increase in the signet ring cell type. Arch. Pathol. Lab. Med. 128, 765–770 (2004).

    PubMed  Google Scholar 

  12. 12

    Shinmura, K. et al. Familial gastric cancer: clinicopathological characteristics, RER phenotype and germline p53 and E-cadherin mutations. Carcinogenesis 20, 1127–1131 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer: analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Correa, P. & Shiao, Y.-H. Phenotypic and genotypic events in gastric carcinogenesis. Cancer Res. 54 (7 Suppl.), 1941s–1943s (1994).

    CAS  PubMed  Google Scholar 

  15. 15

    González, C.A., Sala, N. & Capellá, G. Genetic susceptibility and gastric cancer risk. Int. J. Cancer 100, 249–260 (2002).

    Article  Google Scholar 

  16. 16

    Hirakawa, M. et al. JSNP: a database of common gene variations in the Japanese population. Nucleic Acids Res. 30, 158–162 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Haga, H., Yamada, R., Nakamura, Y. & Tanaka, T. Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. J. Hum. Genet. 47, 605–610 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Yoshida, T. & Yoshimura, K. Outline of disease gene hunting approaches in the Millennium Genome Project of Japan. Proc. Jpn. Acad. 79, 34–50 (2003).

    Article  Google Scholar 

  19. 19

    Kato, N. et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum. Mol. Genet. 17, 617–627 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Reiter, R.E. et al. Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl. Acad. Sci. USA 95, 1735–1740 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Gu, Z. et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 19, 1288–1296 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Bahrenberg, G., Brauers, A., Joost, H.-G. & Jakse, G. Reduced expression of PSCA, a member of the LY-6 family of cell surface antigen, in bladder, esophagus, and stomach tumors. Biochem. Biophys. Res. Commun. 275, 783–788 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Sato, Y. et al. Designing a multistage, SNP-based, genome screen for common diseases. J. Hum. Genet. 49, 669–676 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Karam, S. & Leblond, C.P. Origin and migratory pathways of the eleven epithelial cell types present in the body of the mouse stomach. Microsc. Res. Tech. 31, 193–214 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Karam, S.M., Straiton, T., Hassen, W.M. & Leblond, C.P. Defining epithelial cell progenitors in the human oxyntic mucosa. Stem Cells 21, 322–336 (2003).

    Article  Google Scholar 

  26. 26

    Fukaya, M. et al. Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131, 14–29 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Saffran, D.C. et al. Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc. Natl. Acad. Sci. USA 98, 2658–2663 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Gu, Z., Yamashiro, J., Kono, E. & Reiter, R.E. Anti-prostate stem cell antigen monoclonal antibody 1G8 induces cell death in vitro and inhibits tumor growth in vivo via a Fc-independent mechanism. Cancer Res. 65, 9495–9500 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Wang, G.-Y., Lu, C.-Q., Zhang, R.-M., Hu, X.-H. & Luo, Z.W. The E-cadherin gene polymorphism -160C/A and cancer risk: A HuGE review and meta-analysis of 26 case-control studies. Am. J. Epidemiol. 167, 7–14 (2008).

    Article  Google Scholar 

  30. 30

    Humar, B. et al. Association of CDH1 haplotypes with susceptibility to sporadic diffuse gastric cancer. Oncogene 21, 8192–8195 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Pharoah, P.D. et al. CDH1 c-160a promotor polymorphism is not associated with risk of stomach cancer. Int. J. Cancer 101, 196–197 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Smith, M.G., Hold, G.L., Tahara, E. & El-Omar, E.M. Cellular and molecular aspects of gastric cancer. World J. Gastroenterol. 12, 2979–2990 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Sasazuki, S. et al. Effect of Helicobacter pylori infection combined with CagA and pepsinogen status on gastric cancer development among Japanese men and women: a nested case-control study. Cancer Epidemiol. Biomarkers Prev. 15, 1341–1347 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Kamangar, F., Cheng, C., Abnet, C.C. & Rabkin, C.S. Interleukin-1B polymorphisms and gastric cancer risk-a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 15, 1920–1928 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Tran, C.P., Lin, C., Yamashiro, J. & Reiter, R.E. Prostate stem cell antigen is a marker of late intermediate prostate epithelial cells. Mol. Cancer Res. 1, 113–121 (2002).

    CAS  PubMed  Google Scholar 

  36. 36

    Sharom, F.J. & Radeva, G. GPI-anchored cleavage in the regulation of transmembrane signals. in Subcellular Biochemistry, Volume 37: Membrane Dynamics and Domains (ed. Quinn, P.J.) 285–315 (Kluwer Academic/Plenum Publishers, New York, 2004).

    Chapter  Google Scholar 

  37. 37

    De Nooij-van Dalen, A.G. et al. Characterization of the human LY-6 antigens, the newly annotated member LY-6K included, as molecular markers for head-and-neck squamous cell carcinoma. Int. J. Cancer 103, 768–774 (2003).

    Article  Google Scholar 

  38. 38

    Pharoah, P.D. et al. Polygenic susceptibility to breast cancer and implications for prevention. Nat. Genet. 31, 33–36 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma. - 2nd English edition Gastric Cancer 1, 10–24 (1998).

  40. 40

    Fenoglio-Preiser, C. et al. Gastric carcinoma. in WHO Classification of Tumours: Tumours of the Digestive System (eds. Hamilton, S.R. & Aaltonen, L.A.) 39–52 (IARC Press, Lyon, 2000).

  41. 41

    Noguchi, M., Furuya, S., Takeuchi, T. & Hirohashi, S. Modified formalin and methanol fixation methods for molecular biological and morphological analyses. Pathol. Int. 47, 685–691 (1997).

    CAS  Article  Google Scholar 

  42. 42

    Ohnishi, Y. et al. A high-throughput SNP typing system for genome-wide association studies. J. Hum. Genet. 46, 471–477 (2001).

    CAS  Article  Google Scholar 

  43. 43

    Hirschhorn, J.N. & Daly, M.J. Genome-wide association studies for common diseases and complex traits. Nat. Rev. Genet. 6, 95–108 (2005).

    CAS  Article  Google Scholar 

  44. 44

    Epstein, M.P. & Satten, G.A. Inference on haplotype effects in case-control studies using unphased genotype data. Am. J. Hum. Genet. 73, 1316–1329 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Falush, D., Stephens, M. & Pritchard, J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Bacanu, S.-A., Devlin, B. & Roeder, K. The power of genomic control. Am. J. Hum. Genet. 66, 1933–1944 (2000).

    CAS  Article  Google Scholar 

  47. 47

    Zhu, X., Zhang, S., Zhao, H. & Cooper, R.S. Association mapping, using a mixture model for complex traits. Genet. Epidemiol. 23, 181–196 (2002).

    Article  Google Scholar 

  48. 48

    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York, 1987).

  49. 49

    Saeki, N. et al. GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling. Oncogene 26, 6488–6498 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in Japan by the program for promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NiBio) and by Health and Labour Sciences Research Grants by Ministry of Health, Labour and Welfare. The Korean part of the study was supported by grant 0710340 from the National Cancer Center, Korea.

We thank the following people (listed in alphabetical order) for discussion and technical and statistical assistance: M. Asako, T. Chujo, C. Hamada, T. Hayashida, C. Hirama, F. Igarashi, T. Imai, E. Inoue, S. Kamakami, A. Katoh, O. Kawaguchi, C. Kina, N. Kurata, Y. Liu, G. Maeno, S. Mimaki, N. Mitsuhashi, N. Miyahara, A. Miyaoka, R. Nakajima, J. Nakata, Y. Odaka, T. Ogiwara, N. Ohsawa, E. Ohshima, M. Okada, M. Okuyama, Y. Sakashita, M. Sato, M. Seishi, T. Sobue, H. Suganami, E. Takemoto, T. Taniguchi, S. Uchida, T. Urushidate, M. Ushiama, S. Yabe, N. Yamaguchi, S. Yamamoto and I. Yoshimura.

Author information

Affiliations

Consortia

Contributions

Principal investigators: H. Sakamoto, K. Yoshimura and N.S. Gastric cancer project planning and design: H. Sakamoto, K. Yoshimura, T.Y., H.K. and T.S. Ascertainment of subjects for genetic analyses: H.K., T.S., Y.M., D.S., H. Sugimura, F.T., S.K., N. Matsukura, N. Matsuda, T. Nakamura, I. Hyodo, T. Nishina, W.Y., H.H., M.H., E.T. and S.H. Genetic analyses: H. Sakamoto, Sumiko Ohnami, A.S. and Y.N. Statistical analyses and database: K. Yoshimura, Y.S., H.T., M.A., R.T., Y.T., M.O., K. Aoki, I. Honmyo and S.C. Functional analyses: N.S., K. Aoyagi, H. Sasaki, Sumiko Ohnami, Shunpei Ohnami, K. Yanagihara and H. Sakamoto. National Cancer Center, Korea: K.-A.Y., M.-C.K., Y.-S.L., S.R.P., C.G.K. and I.J.C. Millennium Genome Project Cancer Subteam Leader: T.Y. Millennium Genome Project Human Genome Variation Team Leader: Y.N. Millennium Genome Project Disease Gene Team Leader: S.H.

Corresponding author

Correspondence to Teruhiko Yoshida.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–3, Supplementary Methods and Supplementary Note (PDF 1859 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

The Study Group of Millennium Genome Project for Cancer. Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat Genet 40, 730–740 (2008). https://doi.org/10.1038/ng.152

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing