Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fine mapping of regulatory loci for mammalian gene expression using radiation hybrids

An Erratum to this article was published on 01 May 2008

This article has been updated

Abstract

We mapped regulatory loci for nearly all protein-coding genes in mammals using comparative genomic hybridization and expression array measurements from a panel of mouse–hamster radiation hybrid cell lines. The large number of breaks in the mouse chromosomes and the dense genotyping of the panel allowed extremely sharp mapping of loci. As the regulatory loci result from extra gene dosage, we call them copy number expression quantitative trait loci, or ceQTLs. The −2log10P support interval for the ceQTLs was <150 kb, containing an average of <2–3 genes. We identified 29,769 trans ceQTLs with −log10P > 4, including 13 hotspots each regulating >100 genes in trans. Further, this work identifies 2,761 trans ceQTLs harboring no known genes, and provides evidence for a mode of gene expression autoregulation specific to the X chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: CGH results.
Figure 3: Models.
Figure 4: Cis and trans ceQTLs.
Figure 5: Individual cis and trans ceQTLs.
Figure 6: Effect sizes and regulatory hotspots.
Figure 7: Trans ceQTLs lacking known genes.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 28 April 2008

    In the version of this article initially published, the scale was inadvertently omitted from the bottom left portion of Figure 4. This error has been corrected in the PDF version of the article.

References

  1. Jansen, R.C. & Nap, J.P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wayne, M.L. & McIntyre, L.M. Combining mapping and arraying: an approach to candidate gene identification. Proc. Natl. Acad. Sci. USA 99, 14903–14906 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Kirst, M. et al. Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol. 135, 2368–2378 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morley, M. et al. Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Goring, H.H. et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat. Genet. 39, 1208–1216 (2007).

    Article  PubMed  Google Scholar 

  9. Stranger, B.E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 37, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Goss, S.J. & Harris, H. New method for mapping genes in human chromosomes. Nature 255, 680–684 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. McCarthy, L.C. Whole genome radiation hybrid mapping. Trends Genet. 12, 491–493 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Olivier, M. et al. A high-resolution radiation hybrid map of the human genome draft sequence. Science 291, 1298–1302 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy, L.C. et al. A first-generation whole genome-radiation hybrid map spanning the mouse genome. Genome Res. 7, 1153–1161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Avner, P. et al. A radiation hybrid transcript map of the mouse genome. Nat. Genet. 29, 194–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hudson, T.J. et al. A radiation hybrid map of mouse genes. Nat. Genet. 29, 201–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Peirce, J.L., Lu, L., Gu, J., Silver, L.M. & Williams, R.W. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet. 5, 7 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Behboudi, A. et al. The functional significance of absence: the chromosomal segment harboring Tp53 is absent from the T55 rat radiation hybrid mapping panel. Genomics 79, 844–848 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Jansen, R.C. Maximum likelihood in a generalized linear finite mixture model by using the EM algorithm. Biometrics 49, 227–231 (1993).

    Article  Google Scholar 

  22. Redner, R.A. & Walker, H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26, 195–239 (1984).

    Article  Google Scholar 

  23. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Saldanha, A.J. Java Treeview–extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Hughes, T.R. et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19, 342–347 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Rockman, M.V. & Kruglyak, L. Genetics of global gene expression. Nat. Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Churchill, G.A. & Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brem, R.B., Storey, J.D., Whittle, J. & Kruglyak, L. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436, 701–703 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Storey, J.D., Akey, J.M. & Kruglyak, L. Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol. 3, e267 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B. Methodological 57, 289–300 (1995).

    Google Scholar 

  31. Benjamini, Y. & Yekutieli, D. The control of the false-discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

    Article  Google Scholar 

  32. Carlborg, O. et al. Methodological aspects of the genetic dissection of gene expression. Bioinformatics 21, 2383–2393 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Prandini, P. et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am. J. Hum. Genet. 81, 252–263 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida, K., Yoshitomo-Nakagawa, K., Seki, N., Sasaki, M. & Sugano, S. Cloning, expression analysis, and chromosomal localization of BH-protocadherin (PCDH7), a novel member of the cadherin superfamily. Genomics 49, 458–461 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Heard, E. & Disteche, C.M. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev. 20, 1848–1867 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Yvert, G. et al. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat. Genet. 35, 57–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Lehmann, E.L. & Romano, J.P. Testing Statistical Hypotheses (Springer, New York, 2005).

    Google Scholar 

  38. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Pillai, R.S. MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11, 1753–1761 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cusick, M.E., Klitgord, N., Vidal, M. & Hill, D.E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14 (Spec No. 2), R171–R181 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Perlstein, E.O., Ruderfer, D.M., Roberts, D.C., Schreiber, S.L. & Kruglyak, L. Genetic basis of individual differences in the response to small-molecule drugs in yeast. Nat. Genet. 39, 496–502 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.C.P., A.S., A.H.K. and C.J.F. carried out the experiments; S.A., J.S.B., A.L., R.T.W. and T.W. did the statistical and computational analysis; C.C.P., A.J.L., R.M.L., K.L. and D.J.S. wrote the paper; D.J.S. devised the study.

Corresponding author

Correspondence to Desmond J Smith.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Table 1, Supplementary Figures 1–6 (PDF 3215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C., Ahn, S., Bloom, J. et al. Fine mapping of regulatory loci for mammalian gene expression using radiation hybrids. Nat Genet 40, 421–429 (2008). https://doi.org/10.1038/ng.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing