Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome

Abstract

Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of four individuals with NBS in whom SMARCA2 mutations were identified.
Figure 2: Exons, protein domains, conserved motifs and mutation spectrum for SMARCA2.

Similar content being viewed by others

References

  1. Nicolaides, P. & Baraitser, M. An unusual syndrome with mental retardation and sparse hair. Clin. Dysmorphol. 2, 232–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Sousa, S.B. et al. Nicolaides-Baraitser syndrome: delineation of the phenotype. Am. J. Med. Genet. A. 149A, 1628–1640 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hargreaves, D.C. & Crabtree, G.R. ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res. 21, 396–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu, G. et al. Two novel BRM insertion promoter sequence variants are associated with loss of BRM expression and lung cancer risk. Oncogene 30, 3295–3304 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Magnani, L. & Cabot, R.A. Manipulation of SMARCA2 and SMARCA4 transcript levels in porcine embryos differentially alters development and expression of SMARCA1, SOX2, NANOG, and EIF1. Reproduction 137, 23–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Reisman, D., Glaros, S. & Thompson, E.A. The SWI/SNF complex and cancer. Oncogene 28, 1653–1668 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Christ, L.A., Crowe, C.A., Micale, M.A., Conroy, J.M. & Schwartz, S. Chromosome breakage hotspots and delineation of the critical region for the 9p-deletion syndrome. Am. J. Hum. Genet. 65, 1387–1395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bultman, S. et al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol. Cell 6, 1287–1295 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. & Crabtree, G.R. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366, 170–174 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Richmond, E. & Peterson, C.L. Functional analysis of the DNA-stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res. 24, 3685–3692 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hall, M.C. & Matson, S.W. Helicase motifs: the engine that powers DNA unwinding. Mol. Microbiol. 34, 867–877 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. de La Serna, I.L. et al. Mammalian SWI-SNF complexes contribute to activation of the hsp70 gene. Mol. Cell Biol. 20, 2839–2851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subramanya, H.S., Bird, L.E., Brannigan, J.A. & Wigley, D.B. Crystal structure of a DExx box DNA helicase. Nature 384, 379–383 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Dürr, H., Flaus, A., Owen-Hughes, T. & Hopfner, K.P. Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures. Nucleic Acids Res. 34, 4160–4167 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boerkoel, C.F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30, 215–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Vissers, L.E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat. Genet. 36, 955–957 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bajpai, R. et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463, 958–962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Albers, C.A. et al. Dindel: accurate indel calls from short-read data. Genome Res. 21, 961–973 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olabarriaga, S.D., Glatard, T. & de Boer, P.T. A virtual laboratory for medical image analysis. IEEE Trans. Inf. Technol. Biomed. 14, 979–985 (2010).

    Article  PubMed  Google Scholar 

  25. Liu, X., Jian, X. & Boerwinkle, E. dbNSFP: a lightweight database of human non-synonymous SNPs and their functional predictions. Hum. Mutat. 32, 894–899 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Genome of the Netherlands Project (GoNL) for providing their variant data. GoNL is one of the rainbow projects of the Dutch hub of the Biobanking and Biomolecular Research Infrastructure (BBMRI-NL). We thank S. Olabarriaga and M. Santcroos for their support in using the Dutch Grid for data analysis. We thank T.J.L. de Ravel and P. Brady for critical reading of the manuscript and G. Peeters for technical support. We are grateful to the subjects and their families for participating in this study. This work was made possible by grants from the Agency for Innovation by Science and Technology (IWT; SBO-60848), the Catholic University of Leuven (PFV/10/016 SymBioSys and GOA/12/015 to J.R.V., Y.M. and K.D.), the Queen Elisabeth Medical Foundation (GSKE 1113 to D. Hu and E.S.) and the type 3 large-infrastructure support InfraMouse by the Flanders Hercules Foundation (to D. Hu). B.A.N. is supported by a KOLUMB fellowship from the Foundation for Polish Science. S.B.S. was supported by the Fundação Para a Ciência e Tecnologia (SFRH/BD/46778/2008).

Author information

Authors and Affiliations

Authors

Contributions

J.R.V., K.D., R.H. and S.B.S. designed the experiments. J.K.J.V.H., A.S., Y.M., A.H.C.v.K. and B.D.C.v.S. performed bioinformatic analyses. S.B.S. and R.H. collected the study subjects. B.A.N. performed the sequencing. E.S. and D. Hu performed immunostaining. B.A.N., N.A. and P.v.D. performed functional studies. O.A.A.-R., M.-J.H.v.d.B., A.B., M.C., V.C.-D., M.A.D., I.F., A.F., J.-P.F., L.G., S.G., G.G.-K., B.D.H., D. Ho, J.K., M.K.-W., A.K., K.D.M., M.A.L., S. Maas, S. McKee, A.M., S.A.d.M., F.M.-P., E.O., J.P., E.R., N.S., I.S.-D., C.V., A.V., E.W., D.W., L.W., O.Z., K.D. and R.H. contributed clinical cases and clinical data for the study. B.A.N., J.K.J.V.H., S.B.S., K.D., R.H. and J.R.V. wrote the manuscript.

Corresponding authors

Correspondence to Raoul Hennekam or Joris Robert Vermeesch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1 and 2 and Supplementary Figures 1 and 2 (PDF 6545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Houdt, J., Nowakowska, B., Sousa, S. et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet 44, 445–449 (2012). https://doi.org/10.1038/ng.1105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing