Abstract

Ewing sarcoma, a pediatric tumor characterized by EWSR1-ETS fusions, is predominantly observed in populations of European ancestry. We performed a genome-wide association study (GWAS) of 401 French individuals with Ewing sarcoma, 684 unaffected French individuals and 3,668 unaffected individuals of European descent and living in the United States. We identified candidate risk loci at 1p36.22, 10q21 and 15q15. We replicated these loci in two independent sets of cases and controls. Joint analysis identified associations with rs9430161 (P = 1.4 × 10−20; odds ratio (OR) = 2.2) located 25 kb upstream of TARDBP, rs224278 (P = 4.0 × 10−17; OR = 1.7) located 5 kb upstream of EGR2 and, to a lesser extent, rs4924410 at 15q15 (P = 6.6 × 10−9; OR = 1.5). The major risk haplotypes were less prevalent in Africans, suggesting that these loci could contribute to geographical differences in Ewing sarcoma incidence. TARDBP shares structural similarities with EWSR1 and FUS, which encode RNA binding proteins, and EGR2 is a target gene of EWSR1-ETS. Variants at these loci were associated with expression levels of TARDBP, ADO (encoding cysteamine dioxygenase) and EGR2.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

References

  1. 1.

    et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162–165 (1992).

  2. 2.

    et al. Chromosome translocation in Ewing's sarcoma. N. Engl. J. Med. 309, 496–498 (1983).

  3. 3.

    , & Recent advances in the molecular pathogenesis of Ewing's sarcoma. Oncogene 29, 4504–4516 (2010).

  4. 4.

    & Ewing's sarcoma in Negroes. Lancet 295, 1171 (1970).

  5. 5.

    & Rarity of Ewing's tumour in Negroes. Lancet 295, 777 (1970).

  6. 6.

    et al. Rarity of Ewing's sarcoma in China. Lancet 315, 1255 (1980).

  7. 7.

    et al. Ewing sarcoma demonstrates racial disparities in incidence-related and sex-related differences in outcome: an analysis of 1631 cases from the SEER database, 1973–2005. Cancer 115, 3526–3536 (2009).

  8. 8.

    et al. Racial differences in the incidence of mesenchymal tumors associated with EWSR1 translocation. Cancer Epidemiol. Biomarkers Prev. 20, 449–453 (2011).

  9. 9.

    , & Ewing's sarcoma in siblings: report of the second known occurrence. Am. J. Surg. 107, 598–603 (1964).

  10. 10.

    et al. Ewing's sarcoma in female siblings. A clinical report and review of the literature. Cancer 53, 1959–1962 (1984).

  11. 11.

    & MCLUST version 3 for R: normal mixture modeling and model-based clustering (technical report no. 504) (Department of Statistics, University of Washington, Seattle, Washington, 2006).

  12. 12.

    et al. CGH analysis of secondary genetic changes in Ewing tumors: correlation with metastatic disease in a series of 43 cases. Cancer Genet. Cytogenet. 130, 57–61 (2001).

  13. 13.

    et al. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer 9, 17 (2009).

  14. 14.

    et al. E3N, a French cohort study on cancer risk factors. E3N Group. Etude Epidémiologique auprès de femmes de l'Education Nationale. Eur. J. Cancer Prev. 6, 473–478 (1997).

  15. 15.

    & Pathogenic TARDBP mutations in amyotrophic lateral sclerosis and frontotemporal dementia: disease-associated pathways. Rev. Neurosci. 21, 251–272 (2010).

  16. 16.

    et al. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl. Acad. Sci. USA 107, 16320–16324 (2010).

  17. 17.

    , & TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

  18. 18.

    et al. Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem. 282, 25189–25198 (2007).

  19. 19.

    et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75, 1199–1214 (1993).

  20. 20.

    et al. Krox-20 controls myelination in the peripheral nervous system. Nature 371, 796–799 (1994).

  21. 21.

    , & Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54, 243–257 (2006).

  22. 22.

    et al. Defective bone formation in Krox-20 mutant mice. Development 122, 113–120 (1996).

  23. 23.

    et al. Krox20/EGR2 deficiency accelerates cell growth and differentiation in the monocytic lineage and decreases bone mass. Blood 116, 3964–3971 (2010).

  24. 24.

    et al. Opposing effects of glucocorticoids and Wnt signaling on Krox20 and mineral deposition in osteoblast cultures. J. Cell. Biochem. 103, 1938–1951 (2008).

  25. 25.

    & A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 7, 250–256 (2008).

  26. 26.

    et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11, 421–429 (2007).

  27. 27.

    & Current status of genome-wide association studies in cancer. Hum. Genet. 130, 59–78 (2011).

  28. 28.

    et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N. Engl. J. Med. 358, 2585–2593 (2008).

  29. 29.

    et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

  30. 30.

    et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

  31. 31.

    et al. Genome-wide association study of prostate cancer identifies a second locus at 8q24. Nat. Genet. 39, 645–649 (2007).

  32. 32.

    et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

  33. 33.

    et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81, 559–575 (2007).

  34. 34.

    , , & Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).

  35. 35.

    Fusion gene–negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J. Clin. Oncol. 28, 2151–2158 (2010).

Download references

Acknowledgements

We thank E. Thomas from Synergie Lyon Cancer for advice on statistical methods. We thank the staff from the Integragen Company for excellent service and V. Chene for outstanding assistance. We thank the following clinicians for providing samples used in this work: C. Alenda, F. Almazán, D. Ansoborlo, L. Aymerich, L. Benboukbher, C. Beléndez, C. Berger, C. Bergeron, P. Biron, J.Y. Blay, E. Bompas, H. Bonnefoi, P. Boutard, B. Bui-Nguyen, D. Chauveaux, C. Calvo, A. Carboné, C. Clement, T. Contra, N. Corradini, A.S. Defachelles, V. Gendemer-Delignieres, A. Deville, A. Echevarria, J. Fayette, M. Fraga, D. Frappaz, J.L. Fuster, P. García-Miguel, J.C. Gentet, P. Kerbrat, V. Laithier, V. Laurence, P. Leblond, O. Lejars, R. López-Almaraz, B. López-Ibor, P. Lutz, J.F. Mallet, L. Mansuy, P. Marec Bérard, G. Margueritte, A. Marie Cardine, C. Melero, L. Mignot, F. Millot, O. Minckes, G. Margueritte, C. Mata, M.E. Mateos, M. Melo, C. Moscardó, M. Munzer, B. Narciso, A. Navajas, D. Orbach, C. Oudot, H. Pacquement, C. Paillard, Y. Perel, T. Philip, C. Piguet, M.I. Pintor, D. Plantaz, E. Plouvier, S. Ramirez-Del-Villar, I. Ray-Coquard, Y. Reguerre, M. Rios, P. Rohrlich, H. Rubie, A. Sastre, G. Schleiermacher, C. Schmitt, P. Schneider, L. Sierrasesumaga, C. Soler, N. Sirvent, S. Taque, E. Thebaud, A. Thyss, R. Tichit, J.J. Uriz, J.P. Vannier, F. Watelle-Pichon. We also thank the European Prospective Investigation into Cancer and Nutrition (EPIC) Steering Committee (E. Riboli, Principal Investigator) for access to genotype data from the EPIC cohorts and the Children's Cancer and Leukaemia Group (CCLG) Tissue Bank (funded by Cancer Research UK) for access to specimens. This work was supported by grants from the Institut Curie, the Inserm, the Ligue Nationale Contre le Cancer (Equipe labellisée, Carte d'Identité des Tumeurs program and Recherche Epidémiologique 2009 program), the Région Ile de France, the Institut National du Cancer (2008-044, 0627 and ZP09-027-EPI), the Synergie Lyon Cancer foundation, the KCK and European Embryonal Tumor (EET) pipeline programs, the Société Française des Cancers de l'Enfant, the Spanish Ministry of Science and Technology (SAF2009-10158), the Fundación de la Asociación Española Contra el Cáncer, the Fundación María Francisca de Roviralta and the Sociedad Española de Hematología y Oncología Pediátricas and the following associations: Courir pour Mathieu, Dans les pas du Géant, Olivier Chape, Les Bagouzamanon, Enfants et Santé and les Amis de Claire.

Author information

Author notes

    • Sophie Postel-Vinay
    •  & Amélie S Véron

    These authors contributed equally to this work.

    • David G Cox
    •  & Olivier Delattre

    These authors jointly directed this work.

Affiliations

  1. INSERM, U830 Génétique et Biologie des Cancers, Institut Curie, Paris, France.

    • Sophie Postel-Vinay
    • , Franck Tirode
    • , Carlo Lucchesi
    • , Karine Laud
    •  & Olivier Delattre
  2. Institut Curie, Centre de Recherche, Paris, France.

    • Sophie Postel-Vinay
    • , Franck Tirode
    • , Carlo Lucchesi
    • , Karine Laud
    •  & Olivier Delattre
  3. Léon-Bérard Cancer Center, Cancer Research Center of Lyon, INSERM U 1052, Lyon, France.

    • Amélie S Véron
    • , Gilles Thomas
    •  & David G Cox
  4. Unité de Génétique Somatique, Institut Curie, Centre Hospitalier, Paris, France.

    • Gaelle Pierron
    • , Stéphanie Reynaud
    • , Eve Lapouble
    • , Stelly Ballet
    •  & Olivier Delattre
  5. Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria.

    • Heinrich Kovar
  6. Service de Pédiatrie, Institut Gustave Roussy, Villejuif, France.

    • Odile Oberlin
  7. Universitätsklinikum Freiburg Zentrum für Kinder und Jugendmedizin, Freiburg, Germany.

    • Udo Kontny
  8. Human Genotyping Unit-CeGen, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.

    • Anna González-Neira
  9. Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli di Bologna, Bologna, Italy.

    • Piero Picci
  10. Unidad de Tumores Solidos Infantiles, Instituto de Salud Carlos III, Majahonda, Spain.

    • Javier Alonso
  11. Laboratory of Pediatrics, University of Navarra, University Clinic, Pamplona, Spain.

    • Ana Patino-Garcia
  12. Service de Génétique, Institut Gustave Roussy, Villejuif, France.

    • Brigitte Bressac de Paillerets
  13. INSERM U 915, Institut du Thorax, Institut de Recherche Thérapeutique–Université de Nantes (IRT-UN), Nantes, France.

    • Christian Dina
  14. School of Public Health, Imperial College London, South Kensington Campus, London, UK.

    • Philippe Froguel
  15. Centre National de la Recherche Scientifique Unité Mixte de Recherche 1018, Institut Gustave Roussy, Villejuif, France.

    • Françoise Clavel-Chapelon
  16. Université Paris Descartes, Sorbonne Paris Cité, Paris, France.

    • Francois Doz
  17. Institut Curie, Département de Pédiatrie, Centre Hospitalier, Paris, France.

    • Francois Doz
    •  & Jean Michon
  18. Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

    • Stephen J Chanock
  19. Synergie Lyon Cancer, Lyon, France.

    • Gilles Thomas

Authors

  1. Search for Sophie Postel-Vinay in:

  2. Search for Amélie S Véron in:

  3. Search for Franck Tirode in:

  4. Search for Gaelle Pierron in:

  5. Search for Stéphanie Reynaud in:

  6. Search for Heinrich Kovar in:

  7. Search for Odile Oberlin in:

  8. Search for Eve Lapouble in:

  9. Search for Stelly Ballet in:

  10. Search for Carlo Lucchesi in:

  11. Search for Udo Kontny in:

  12. Search for Anna González-Neira in:

  13. Search for Piero Picci in:

  14. Search for Javier Alonso in:

  15. Search for Ana Patino-Garcia in:

  16. Search for Brigitte Bressac de Paillerets in:

  17. Search for Karine Laud in:

  18. Search for Christian Dina in:

  19. Search for Philippe Froguel in:

  20. Search for Françoise Clavel-Chapelon in:

  21. Search for Francois Doz in:

  22. Search for Jean Michon in:

  23. Search for Stephen J Chanock in:

  24. Search for Gilles Thomas in:

  25. Search for David G Cox in:

  26. Search for Olivier Delattre in:

Contributions

S.P.-V. contributed to the design of the study and wrote all documents required for ethical issues as well as information for patients and referent oncologists. A.S.V., D.C. and G.T. analyzed the GWAS data. G.P., S.B. and S.R. prepared all samples and performed genotyping of replication cohorts. F.T. and C.L. analyzed transcriptomic data and performed genotype-expression correlation analyses. H.K., O.O., U.K., A.G.-N., P.P., J.A., A.P.-G., B.B.d.P., F.D., J.M. and O.D. recruited Ewing sarcoma patients and participated in the diagnostic evaluations. E.L. collected informed consents. K.L. contributed the conditional Ewing cell model and performed the in vivo experiments. C.D., P.F. and F.C.-C. contributed French, E3N and EPIC controls. S.P.V., G.T., S.J.C., D.G.C. and O.D. contributed to the overall design of the study. All coauthors contributed to manuscript writing.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Olivier Delattre.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Tables 1–4 and Supplementary Figures 1–6

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/ng.1085

Further reading