Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Common variants near MBNL1 and NKX2-5 are associated with infantile hypertrophic pyloric stenosis

Abstract

Infantile hypertrophic pyloric stenosis (IHPS) is a severe condition characterized by hypertrophy of the pyloric sphincter muscle. We conducted a genome-wide association study (GWAS) on 1,001 surgery-confirmed cases and 2,401 controls from Denmark. The six most strongly associated loci were tested in a replication set of 796 cases and 876 controls. Three SNPs reached genome-wide significance. One of these SNPs, rs11712066 (odds ratio (OR) = 1.61; P = 1.5 × 10−17) at 3p25.1, is located 150 kb upstream of MBNL1, which encodes a factor that regulates splicing transitions occurring shortly after birth. The second SNP, rs573872 (OR = 1.41; P = 4.3 × 10−12), maps to an intergenic region at 3p25.2 approximately 1.3 Mb downstream of MBNL1. The third SNP, rs29784 (OR = 1.42; P = 1.5 × 10−15) at 5q35.2, is 64 kb downstream of NKX2-5, which is involved in development of cardiac muscle tissue and embryonic gut development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of the IHPS GWAS.
Figure 2: Regional association plots for three confirmed newly identified IHPS loci.

Similar content being viewed by others

References

  1. Ranells, J.D., Carver, J.D. & Kirby, R.S. Infantile hypertrophic pyloric stenosis: epidemiology, genetics, and clinical update. Adv. Pediatr. 58, 195–206 (2011).

    Article  PubMed  Google Scholar 

  2. Mitchell, L.E. & Risch, N. The genetics of infantile hypertrophic pyloric stenosis. A reanalysis. Am. J. Dis. Child. 147, 1203–1211 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Krogh, C. et al. Familial aggregation and heritability of pyloric stenosis. J. Am. Med. Assoc. 303, 2393–2399 (2010).

    Article  CAS  Google Scholar 

  4. Chung, E. Infantile hypertrophic pyloric stenosis: genes and environment. Arch. Dis. Child. 93, 1003–1004 (2008).

    Article  PubMed  Google Scholar 

  5. Schechter, R., Torfs, C.P. & Bateson, T.F. The epidemiology of infantile hypertrophic pyloric stenosis. Paediatr. Perinat. Epidemiol. 11, 407–427 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. MacMahon, B. The continuing enigma of pyloric stenosis of infancy: a review. Epidemiology 17, 195–201 (2006).

    Article  PubMed  Google Scholar 

  7. Honein, M.A. et al. Infantile hypertrophic pyloric stenosis after pertussis prophylaxis with erythromcyin: a case review and cohort study. Lancet 354, 2101–2105 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Pisacane, A. et al. Breast feeding and hypertrophic pyloric stenosis: population based case-control study. Br. Med. J. 312, 745–746 (1996).

    Article  CAS  Google Scholar 

  9. Chakraborty, R. The inheritance of pyloric stenosis explained by a multifactorial threshold model with sex dimorphism for liability. Genet. Epidemiol. 3, 1–15 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Panteli, C. New insights into the pathogenesis of infantile pyloric stenosis. Pediatr. Surg. Int. 25, 1043–1052 (2009).

    Article  PubMed  Google Scholar 

  11. Falconer, D.S. The inheritance of liability to certain diseases, estimated from the incidence among relatives. Ann. Hum. Genet. 29, 51–76 (1965).

    Article  Google Scholar 

  12. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  13. Myers, R.M. et al. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

    Article  CAS  Google Scholar 

  14. Visel, A., Rubin, E.M. & Pennacchio, L.A. Genomic views of distant-acting enhancers. Nature 461, 199–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfeufer, A. et al. Genome-wide association study of PR interval. Nat. Genet. 42, 153–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ho, T.H. et al. Muscleblind proteins regulate alternative splicing. EMBO J. 23, 3103–3112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40, 1413–1415 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bland, C.S. et al. Global regulation of alternative splicing during myogenic differentiation. Nucleic Acids Res. 38, 7651–7664 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl. Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Fu, Y., Yan, W., Mohun, T.J. & Evans, S.M. Vertebrate tinman homologues XNkx2-3 and XNkx2-5 are required for heart formation in a functionally redundant manner. Development 125, 4439–4449 (1998).

    CAS  PubMed  Google Scholar 

  22. Reamon-Buettner, S.M. & Borlak, J. NKX2–5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum. Mutat. 31, 1185–1194 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kasahara, H., Bartunkova, S., Schinke, M., Tanaka, M. & Izumo, S. Cardiac and extracardiac expression of Csx/Nkx2.5 homeodomain protein. Circ. Res. 82, 936–946 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, D.M. & Tabin, C.J. BMP signalling specifies the pyloric sphincter. Nature 402, 748–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Smith, D.M., Nielsen, C., Tabin, C.J. & Roberts, D.J. Roles of BMP signaling and Nkx2.5 in patterning at the chick midgut-foregut boundary. Development 127, 3671–3681 (2000).

    CAS  PubMed  Google Scholar 

  26. Self, M., Geng, X. & Oliver, G. Six2 activity is required for the formation of the mammalian pyloric sphincter. Dev. Biol. 334, 409–417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  32. So, H.C., Gui, A.H., Cherny, S.S. & Sham, P.C. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet. Epidemiol. 35, 310–317 (2011).

    Article  PubMed  Google Scholar 

  33. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from the Lundbeck Foundation (R34-A3931), the Novo Nordisk Foundation and the Danish Medical Research Council (271-06-0628). The GWAS data for the control samples were generated for our study of preterm birth within the Gene, Environment Association Studies (GENEVA) consortium, with funding provided through the US National Institutes of Health (NIH) Genes, Environment and Health Initiative (GEI; U01HG004423). Assistance with genotype cleaning and general study coordination for the preterm birth project were provided by the GENEVA Coordinating Center (U01HG004446). Genotyping was performed at the Johns Hopkins University Center for Inherited Disease Research, with support from the NIH GEI (U01HG004438).

Author information

Authors and Affiliations

Authors

Contributions

B.F., F.G. and M.M. wrote the first draft of the manuscript. B.F. and F.G. analyzed the data. M.V.H. and D.M.H. performed the experiments. C.K., S.G., J.C.M. and H.A.B. contributed by collecting phenotype data, providing genotype data and/or giving advice on the interpretation of results. B.F., F.G. and M.M. planned and supervised the work. All authors contributed to writing the final manuscript.

Corresponding authors

Correspondence to Bjarke Feenstra or Mads Melbye.

Ethics declarations

Competing interests

Statens Serum Institut has filed a priority patent application at the Danish Patent and Trademark Office on the use of genetic profiling to identify newborns at risk of IHPS that contains subject matter drawn from the work published here. B.F., F.G. and M.M. are listed on the patent application.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 1–7 and Supplementary Figures 1–4 (PDF 1960 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feenstra, B., Geller, F., Krogh, C. et al. Common variants near MBNL1 and NKX2-5 are associated with infantile hypertrophic pyloric stenosis. Nat Genet 44, 334–337 (2012). https://doi.org/10.1038/ng.1067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing