Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development

Abstract

Chromatin modifications are associated with many aspects of gene expression, yet their role in cellular transitions during development remains elusive. Here, we use a new approach to obtain cell type–specific information on chromatin state and RNA polymerase II (Pol II) occupancy within the multicellular Drosophila melanogaster embryo. We directly assessed the relationship between chromatin modifications and the spatio-temporal activity of enhancers. Rather than having a unique chromatin state, active developmental enhancers show heterogeneous histone modifications and Pol II occupancy. Despite this complexity, combined chromatin signatures and Pol II presence are sufficient to predict enhancer activity de novo. Pol II recruitment is highly predictive of the timing of enhancer activity and seems dependent on the timing and location of transcription factor binding. Chromatin modifications typically demarcate large regulatory regions encompassing multiple enhancers, whereas local changes in nucleosome positioning and Pol II occupancy delineate single active enhancers. This cell type–specific view identifies dynamic enhancer usage, an essential step in deciphering developmental networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BiTS-ChIP facilitates cell type–specific ChIP in a multicellular context.
Figure 2: BiTS-ChIP has high tissue specificity and sensitivity.
Figure 3: Chromatin marks and Pol II presence are highly correlated with enhancer activity.
Figure 4: Pol II occupancy and local nucleosome positioning identify temporal enhancer activity.
Figure 5: Modeling chromatin state on enhancers to predict enhancer activity.
Figure 6: Predicted active regulatory regions function as enhancers in vivo.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

References

  1. Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet. 41, 376–381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Karlić, R., Chung, H.R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA 107, 2926–2931 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Creyghton, M.P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type–specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Riddle, N.C. et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 21, 147–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou, V.W., Goren, A. & Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  PubMed  Google Scholar 

  12. Gaudet, J. & Mango, S.E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science 295, 821–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Cao, Y. et al. Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J. 25, 502–511 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jakobsen, J.S. et al. Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network. Genes Dev. 21, 2448–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilczyński, B. & Furlong, E.E. Dynamic CRM occupancy reflects a temporal map of developmental progression. Mol. Syst. Biol. 6, 383 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Soshnikova, N. & Duboule, D. Epigenetic temporal control of mouse Hox genes in vivo. Science 324, 1320–1323 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Akkers, R.C. et al. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev. Cell 17, 425–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, T. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21, 227–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. modENCODE Consortium et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

  20. Wardle, F.C. et al. Zebrafish promoter microarrays identify actively transcribed embryonic genes. Genome Biol. 7, R71 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sandmann, T., Jakobsen, J.S. & Furlong, E.E. ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat. Protoc. 1, 2839–2855 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Cunha, P.M. et al. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity. PLoS Genet. 6, e1001014 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu, Y.H. et al. A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev. Cell 16, 280–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Sandmann, T. et al. A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev. 21, 436–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sandmann, T. et al. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev. Cell 10, 797–807 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E.E. Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462, 65–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Filion, G.J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Black, B.L. & Olson, E.N. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu. Rev. Cell Dev. Biol. 14, 167–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Tomancak, P. et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 3, RESEARCH0088 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zeitlinger, J. et al. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet. 39, 1512–1516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nègre, N. et al. A cis-regulatory map of the Drosophila genome. Nature 471, 527–531 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kim, T.K. et al. Widespread transcription at neuronal activity–regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18, 956–963 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4, 80–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He, H.H. et al. Nucleosome dynamics define transcriptional enhancers. Nat. Genet. 42, 343–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoffman, B.G. et al. Locus co-occupancy, nucleosome positioning, and H3K4me1 regulate the functionality of FOXA2-, HNF4A-, and PDX1-bound loci in islets and liver. Genome Res. 20, 1037–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Beer, M.A. & Tavazoie, S. Predicting gene expression from sequence. Cell 117, 185–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. & Nolan, G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Deal, R.B. & Henikoff, S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell 18, 1030–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheung, I. et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl. Acad. Sci. USA 107, 8824–8829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shankaranarayanan, P. et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat. Methods 8, 565–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Adli, M., Zhu, J. & Bernstein, B.E. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods 7, 615–618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keefe, A.D., Wilson, D.S., Seelig, B. & Szostak, J.W. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr. Purif. 23, 440–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Jiang, J., Kosman, D., Ip, Y.T. & Levine, M. The dorsal morphogen gradient regulates the mesoderm determinant twist in early Drosophila embryos. Genes Dev. 5, 1881–1891 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Kosman, D. et al. Multiplex detection of RNA expression in Drosophila embryos. Science 305, 846 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Ramos, E., Price, M., Rohrbaugh, M. & Lai, Z.C. Identifying functional cis-acting regulatory modules of the yan gene in Drosophila melanogaster. Dev. Genes Evol. 213, 83–89 (2003).

    CAS  PubMed  Google Scholar 

  54. Klingler, M., Soong, J., Butler, B. & Gergen, J.P. Disperse versus compact elements for the regulation of runt stripes in Drosophila. Dev. Biol. 177, 73–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Schroeder, M.D. et al. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol. 2, E271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Reeves, N. & Posakony, J.W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell 8, 413–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Barrio, R., de Celis, J.F., Bolshakov, S. & Kafatos, F.C. Identification of regulatory regions driving the expression of the Drosophila spalt complex at different developmental stages. Dev. Biol. 215, 33–47 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Adelman, K. et al. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17, 103–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Morgan, M. et al. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tweedie, S. et al. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 37, D555–D559 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nix, D.A., Courdy, S.J. & Boucher, K.M. Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics 9, 523 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kuhn, R.M. et al. The UCSC genome browser database: update 2007. Nucleic Acids Res. 35, D668–D673 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Tomancak, P. et al. Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biol. 8, R145 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gallo, S.M. et al. REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila. Nucleic Acids Res. 39, D118–D123 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Phipson, B. & Smyth, G.K. Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9, Article39 (2010).

    Article  PubMed  Google Scholar 

  69. Saeed, A.I. et al. TM4 microarray software suite. Methods Enzymol. 411, 134–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Wilczyński, B. & Dojer, N. BNFinder: exact and efficient method for learning Bayesian networks. Bioinformatics 25, 286–287 (2009).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was technically supported by the EMBL Genomics Core facility for Solexa sequencing and by the IT service unit. We thank S. Müller for performing Drosophila injections and all members of the Furlong laboratory for discussions and comments on the manuscript. We thank J. Lis (Cornell University) for the Rpb3 (Pol II) antibody. This work was supported by grants to E.E.M.F. from ERASysBio (Mod Heart) and the Human Frontiers Science Program Organization and by a long-term fellowship to R.P.Z. from the International Human Frontiers Science Program Organization. S.B. was funded by the EMBL Interdisciplinary Postdoc (EIPOD) programme.

Author information

Authors and Affiliations

Authors

Contributions

S.B., R.P.Z. and E.E.M.F. designed the study. S.B., R.P.Z., E.H.G., Y.G.-H., A.P.-G. and A.R. conducted experiments. S.B., R.P.Z., A.P.-G. and A.R. performed FACS sorting. S.B. and R.P.Z. performed the BiTS-ChIP-Seq. C.G., S.B. and N.D. performed computational analyses. B.W. helped with the Bayesian modeling. S.B., C.G., R.P.Z. and E.E.M.F. wrote the manuscript.

Corresponding author

Correspondence to Eileen E M Furlong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Tables 3, 5, 6 and 8 and Supplementary Figures 1–13. (PDF 6437 kb)

Supplementary Table 1

CAD2 entries in tabular format (XLS 251 kb)

Supplementary Table 2

CAD2 entry list filtered for genes and potential unannotated TSSs (XLS 103 kb)

Supplementary Table 4

112 BNfinder predictions (XLS 67 kb)

Supplementary Table 7

Genes grouped by spatio-temporal activity (XLS 487 kb)

Supplementary Table 9

Histone modification and PolII intensities on CAD2 enhancers (XLS 52 kb)

Supplementary Table 10

BNfinder input file (XLSX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonn, S., Zinzen, R., Girardot, C. et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44, 148–156 (2012). https://doi.org/10.1038/ng.1064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing