Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association analysis identifies three new breast cancer susceptibility loci

Abstract

Breast cancer is the most common cancer among women. To date, 22 common breast cancer susceptibility loci have been identified accounting for 8% of the heritability of the disease. We attempted to replicate 72 promising associations from two independent genome-wide association studies (GWAS) in 70,000 cases and 68,000 controls from 41 case-control studies and 9 breast cancer GWAS. We identified three new breast cancer risk loci at 12p11 (rs10771399; P = 2.7 × 10−35), 12q24 (rs1292011; P = 4.3 × 10−19) and 21q21 (rs2823093; P = 1.1 × 10−12). rs10771399 was associated with similar relative risks for both estrogen receptor (ER)-negative and ER-positive breast cancer, whereas the other two loci were associated only with ER-positive disease. Two of the loci lie in regions that contain strong plausible candidate genes: PTHLH (12p11) has a crucial role in mammary gland development and the establishment of bone metastasis in breast cancer, and NRIP1 (21q21) encodes an ER cofactor and has a role in the regulation of breast cancer cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Forest plots for the three SNPs showing evidence of association with breast cancer.
Figure 2: Association plots for the three new breast cancer susceptibility loci drawn using SNP annotation and proxy search (SNAP) software 35 (ref. 68).

Similar content being viewed by others

References

  1. Kamangar, F., Dores, G.M. & Anderson, W.F. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J. Clin. Oncol. 24, 2137–2150 (2006).

    Article  PubMed  Google Scholar 

  2. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Peto, J. & Mack, T.M. High constant incidence in twins and other relatives of women with breast cancer. Nat. Genet. 26, 411–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed, S. et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat. Genet. 41, 585–590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antoniou, A.C. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nat. Genet. 42, 885–892 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fletcher, O. et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl. Cancer Inst. 103, 425–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Haiman, C.A. et al. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nat. Genet. 43, 1210–1214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stacey, S.N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat. Genet. 39, 865–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Stacey, S.N. et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer. Nat. Genet. 40, 703–706 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Thomas, G. et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat. Genet. 41, 579–584 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zheng, W. et al. Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat. Genet. 41, 324–328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cox, A. et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat. Genet. 39, 352–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Varghese, J.S. & Easton, D.F. Genome-wide association studies in common cancers—what have we learnt? Curr. Opin. Genet. Dev. 20, 201–209 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Fletcher, O. et al. Novel breast cancer susceptibility locus at 9q31.2: results of a genome-wide association study. J. Natl. Cancer Inst. 103, 425–435 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Turnbull, C. et al. Genome-wide association study identifies five new breast cancer susceptibility loci. Nat. Genet. 42, 504–507 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Broeks, A. et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Hum. Mol. Genet. 20, 3289–3303 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Closas, M. et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet. 4, e1000054 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Antoniou, A.C. & Easton, D.F. Risk prediction models for familial breast cancer. Future Oncol. 2, 257–274 (2006).

    Article  PubMed  Google Scholar 

  22. Dunbar, M.E., Wysolmerski, J.J. & Broadus, A.E. Parathyroid hormone–related protein: from hypercalcemia of malignancy to developmental regulatory molecule. Am. J. Med. Sci. 312, 287–294 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Philbrick, W.M. et al. Defining the roles of parathyroid hormone–related protein in normal physiology. Physiol. Rev. 76, 127–173 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Southby, J. et al. Immunohistochemical localization of parathyroid hormone–related protein in human breast cancer. Cancer Res. 50, 7710–7716 (1990).

    CAS  PubMed  Google Scholar 

  25. Wysolmerski, J.J. & Stewart, A.F. The physiology of parathyroid hormone–related protein: an emerging role as a developmental factor. Annu. Rev. Physiol. 60, 431–460 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kovacs, C.S. & Kronenberg, H.M. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr. Rev. 18, 832–872 (1997).

    CAS  PubMed  Google Scholar 

  27. Wysolmerski, J.J. Interactions between breast, bone, and brain regulate mineral and skeletal metabolism during lactation. Ann. NY Acad. Sci. 1192, 161–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Jüppner, H. et al. A G protein–linked receptor for parathyroid hormone and parathyroid hormone–related peptide. Science 254, 1024–1026 (1991).

    Article  PubMed  Google Scholar 

  29. DeMauro, S. & Wysolmerski, J. Hypercalcemia in breast cancer: an echo of bone mobilization during lactation? J. Mammary Gland Biol. Neoplasia 10, 157–167 (2005).

    Article  PubMed  Google Scholar 

  30. Dunbar, M.E. & Wysolmerski, J.J. Parathyroid hormone–related protein: a developmental regulatory molecule necessary for mammary gland development. J. Mammary Gland Biol. Neoplasia 4, 21–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Wysolmerski, J.J. & Broadus, A.E. Hypercalcemia of malignancy: the central role of parathyroid hormone–related protein. Annu. Rev. Med. 45, 189–200 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Henderson, J.E. et al. Nucleolar localization of parathyroid hormone–related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death. Mol. Cell. Biol. 15, 4064–4075 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okoumassoun, L.E., Russo, C., Denizeau, F., Averill-Bates, D. & Henderson, J.E. Parathyroid hormone–related protein (PTHrP) inhibits mitochondrial-dependent apoptosis through CK2. J. Cell. Physiol. 212, 591–599 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Henderson, M.A. et al. Parathyroid hormone–related protein localization in breast cancers predict improved prognosis. Cancer Res. 66, 2250–2256 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Linforth, R. et al. Coexpression of parathyroid hormone related protein and its receptor in early breast cancer predicts poor patient survival. Clin. Cancer Res. 8, 3172–3177 (2002).

    CAS  PubMed  Google Scholar 

  36. Yoshida, A. et al. Significance of the parathyroid hormone–related protein expression in breast carcinoma. Breast Cancer 7, 215–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Fleming, N.I. et al. Parathyroid hormone–related protein protects against mammary tumor emergence and is associated with monocyte infiltration in ductal carcinoma in situ. Cancer Res. 69, 7473–7479 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Bluteau, O. et al. Bi-allelic inactivation of TCF1 in hepatic adenomas. Nat. Genet. 32, 312–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Cho, Y.S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Cui, R. et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology 137, 1768–1775 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Erdmann, J. et al. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 41, 280–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Purdue, M.P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Soranzo, N. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat. Genet. 41, 1182–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Todd, J.A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu, C. et al. Genome-wide association study identifies three new susceptibility loci for esophageal squamous-cell carcinoma in Chinese populations. Nat. Genet. 43, 679–684 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kress, T.R. et al. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol. Cell 41, 445–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Davenport, T.G., Jerome-Majewska, L.A. & Papaioannou, V.E. Mammary gland, limb and yolk sac defects in mice lacking Tbx3, the gene mutated in human ulnar mammary syndrome. Development 130, 2263–2273 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Bamshad, M. et al. Mutations in human TBX3 alter limb, apocrine and genital development in ulnar-mammary syndrome. Nat. Genet. 16, 311–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Fan, W., Huang, X., Chen, C., Gray, J. & Huang, T. TBX3 and its isoform TBX3+2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. Cancer Res. 64, 5132–5139 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Lomnytska, M., Dubrovska, A., Hellman, U., Volodko, N. & Souchelnytskyi, S. Increased expression of cSHMT, Tbx3 and utrophin in plasma of ovarian and breast cancer patients. Int. J. Cancer 118, 412–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Lyng, H. et al. Gene expressions and copy numbers associated with metastatic phenotypes of uterine cervical cancer. BMC Genomics 7, 268 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rowley, M., Grothey, E. & Couch, F.J. The role of Tbx2 and Tbx3 in mammary development and tumorigenesis. J. Mammary Gland Biol. Neoplasia 9, 109–118 (2004).

    Article  PubMed  Google Scholar 

  55. Fillmore, C.M. et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc. Natl. Acad. Sci. USA 107, 21737–21742 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Renard, C.A. et al. Tbx3 is a downstream target of the Wnt/β-catenin pathway and a critical mediator of β-catenin survival functions in liver cancer. Cancer Res. 67, 901–910 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Reyal, F. et al. A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res. 10, R93 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. van de Vijver, M.J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. L'Horset, F., Dauvois, S., Heery, D.M., Cavailles, V. & Parker, M.G. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol. Cell. Biol. 16, 6029–6036 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tazawa, H. et al. Regulation of subnuclear localization is associated with a mechanism for nuclear receptor corepression by RIP140. Mol. Cell. Biol. 23, 4187–4198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. White, K.A., Yore, M.M., Deng, D. & Spinella, M.J. Limiting effects of RIP140 in estrogen signaling: potential mediation of anti-estrogenic effects of retinoic acid. J. Biol. Chem. 280, 7829–7835 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Lin, J. et al. Four and a half LIM domains 1 (FHL1) and receptor interacting protein of 140kDa (RIP140) interact and cooperate in estrogen signaling. Int. J. Biochem. Cell Biol. 41, 1613–1618 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Kerley, J.S., Olsen, S.L., Freemantle, S.J. & Spinella, M.J. Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism. Biochem. Biophys. Res. Commun. 285, 969–975 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. White, K.A. et al. Negative feedback at the level of nuclear receptor coregulation. Self-limitation of retinoid signaling by RIP140. J. Biol. Chem. 278, 43889–43892 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Demirpence, E. et al. Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res. 54, 1458–1464 (1994).

    CAS  PubMed  Google Scholar 

  66. Fontana, J.A., Nervi, C., Shao, Z.M. & Jetten, A.M. Retinoid antagonism of estrogen-responsive transforming growth factor α and pS2 gene expression in breast carcinoma cells. Cancer Res. 52, 3938–3945 (1992).

    CAS  PubMed  Google Scholar 

  67. Vega, A. et al. Evaluating new candidate SNPs as low penetrance risk factors in sporadic breast cancer: a two-stage Spanish case-control study. Gynecol. Oncol. 112, 210–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Johnson, A.D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aulchenko, Y.S., Struchalin, M.V. & van Duijn, C.M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following individuals for their contribution to this project (study names given in parentheses): S. Cornelissen, R. van Hien, L. Braaf, L. Van't Veer, B. Bueno-de-Mesquita and S. Canisius (ABCS); N. McInerney, G. Colleran, A. Rowan and N. Miller (BIGGS); A. Langheinz (BSUCH); J.I. Arias Pérez, P. Zamora, P. Menendez, T. Moreno and G. Pita (CNIO-BCS); M. Adank, M. Ausems and S. Verhoef (DFBBCS); U. Hamann, Y.-D. Ko, C. Baisch, H.-P. Fischer, B. Pesch, S. Rabstein and V. Harth (GENICA); K. Aaltonen, P. Heikkilä, T. Heikkinen, D. Greco, R.N.H. Jäntti and I. Erkkilä (HEBCS); H. Kemiläinen, E. Myöhänen and A. Parkkinen (KBCP); T. Slanger, E. Mutschelknauss, S. Behrens, R. Birr, M. Celik, U. Eilber, B. Kaspereit, N. Knese and K. Smit (MARIE); P. Radice, B. Peissel, M. Barile and M.A. Pierotti (MBCSG); T. Selander, M. Gill, L. Collins and N. Weerasooriya (OFBCR); M. Grip, K. Mononen and M. Otsukka (OBCS); E. Krol-Warmerdam and J. Blom (ORIGO); and P. Boonyawongviroj and P. Siriwanarungsan (ACP). For full acknowledgments, including funding sources, see the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.G. and D.F.E. wrote the manuscript. K.M., M.G. and D.F.E. performed the statistical analysis. O.F., N.J., N.O., I.d.S.S., M.L. and J.P. led the BBCS GWAS. D.F.E., P.D.P.P., A.M.D., C.T. and N.R. led the UK2 GWAS. Q. Waisfisz and H.M.-H. led the DFBBCS GWAS, with support from A.G.U. and F.R., P. Hall, K.C., A.I. and J. Liu led the SASBAC GWAS. H.N., K.A. and C. Blomqvist led the HEBCS GWAS. A. Meindl, R.K.S., B.M.-M. and P.L. led the GC-HBOC GWAS. J.C.-C., R.H., S.N. and D.F.-J. led the MARIE GWAS. J.L.H., M. Southey, H.T., E.M., D.S. and M. Bui led the ABCFS/kConFab GWAS. D.J.H. and S.J.C. led the CGEMS GWAS. E.D. and J.D. provided bioinformatics support. Q. Wang, M.K.H. and K.D. provided data management support for BCAC. C.L., C. Baynes, D.C., M.M. and S.A. managed centralized genotyping for BCAC samples. M.K.S. provided gene expression analysis. J.L.H., M. Southey, C.A. and D.J.P. coordinated the ABCFR study. M.K.S., A.B., S.V. and F.B.L.H. coordinated ABCS. P.A.F., M.P.L., M.W.B. and A.B.E. coordinated the BBCC study. E.S., I.T. and M.K. coordinated BIGGS. F. Marme, A. Schneeweiss, C. Sohn and B. Burwinkel coordinated the BSUCH study. P.G., T.T., E.C.-D. and F. Menegaux coordinated the CECILE study. S.E.B., B.G.N. and S.F.N. coordinated CGPS. R.L.M., M.R.A., A.G.-N. and J. Benítez coordinated CNIO-BCS. H.A.-C., A.Z., L. Bernstein and C.C.D. coordinated CTS. H. Brenner, H.M., V.A. and C. Stegmaier coordinated the ESTHER study. C.J., H. Brauch and T.B. coordinated the GENICA study. J.C.-C., S.W.-G. and U.E. coordinated the GESBC study. T.D., P.S., M. Bremer and P. Hillemanns coordinated HABCS. N.V.B., N.N.A., Y.I.R., J.H.K. and T.D. coordinated HMBCS. M. Bermisheva, D.P., N.V.B., T.D. and E.K. coordinated HUBCS. A. Lindblom and S. Margolin coordinated the KARBAC study. A. Mannermaa, V. Kataja, V.-M.K. and J.M.H. coordinated the KBCP study. D.L., B.T.Y., G.F. and K.L. coordinated the LMBC study. S. Manoukian, B. Bonanni, S.F. and P.P. coordinated the MBCSG study. F.J.C., X.W., K.S. and A. Lee coordinated the MCBCS study. M. Southey, G.G.G., L. Baglietto, G.S. and C.M. coordinated MCCS. G.G.A., V. Kristensen and A.-L.B.-D. coordinated NBCS. E.M.J. and A. Miron coordinated the NC-BCFR study. R.W., K.P., A.J.-V. and S.K. coordinated OBCS. I.L.A., G.G. and A.M.M. coordinated the OFBCR study. P.D. C.J.v.A., R.A.E.M.T. and C. Seynaeve coordinated the ORIGO study. J.D.F., M.G.-C., L. Brinton and J. Lissowska coordinated PBCS. M.J.H., A.H., R.A.O. and A.M.W.v.d.O. coordinated RBCS. A. Cox and M.W.R.R. coordinated SBCS. B.A.J.P. initiated SEARCH with P.D.P.P. and D.F.E., M. Shah coordinated SEARCH. A.J., J. Lubinski, K.J. and K. Durda coordinated SZBCS. M.J., M. Schoemaker, A.A. and A. Swerdlow coordinated UKBGS. G.C.-T. led the contribution of kConFab cases and AOCS controls to BCAC, and J. Beesley and X.C. performed iPLEX genotyping for several of the BCAC sites. K.R.M., A. Lophatananon, S.R. and A. Chaiwerawattana coordinated the ACP study. D.K., K.-Y.Y. and D.-Y.N. coordinated SEBCS. C.-Y.S. J.-C.Y., P.-E.W. and C.-N.H. coordinated TWBCS. A.P., R.S. and L.V. coordinated DBCSS. D.M.E., W.J.T., S.M.G. and N.J.G. coordinated the POSH study. HEBON organized the patient recruitment and data and sample collection for the DFBBCS GWAS. FBCS organized patient recruitment and data and sample collection for the UK2 GWAS. The GENICA Network organized patient recruitment and data and sample collection for the GENICA study. kConFab investigators and the Australian Ovarian Cancer Study organized recruitment and data and sample collection for kConFab and AOCS, respectively.

Corresponding author

Correspondence to Douglas F Easton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of contributing authors is provided in the Supplementary Note.

A full list of contributing authors is provided in the Supplementary Note.

A full list of contributing authors is provided in the Supplementary Note.

A full list of contributing authors is provided in the Supplementary Note.

A full list of contributing authors is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7 and Supplementary Note (PDF 876 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghoussaini, M., Fletcher, O., Michailidou, K. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nat Genet 44, 312–318 (2012). https://doi.org/10.1038/ng.1049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1049

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer