Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutionary paths to antibiotic resistance under dynamically sustained drug selection

Abstract

Antibiotic resistance can evolve through the sequential accumulation of multiple mutations1. To study such gradual evolution, we developed a selection device, the 'morbidostat', that continuously monitors bacterial growth and dynamically regulates drug concentrations, such that the evolving population is constantly challenged2,3,4,5. We analyzed the evolution of resistance in Escherichia coli under selection with single drugs, including chloramphenicol, doxycycline and trimethoprim. Over a period of 20 days, resistance levels increased dramatically, with parallel populations showing similar phenotypic trajectories. Whole-genome sequencing of the evolved strains identified mutations both specific to resistance to a particular drug and shared in resistance to multiple drugs. Chloramphenicol and doxycycline resistance evolved smoothly through diverse combinations of mutations in genes involved in translation, transcription and transport3. In contrast, trimethoprim resistance evolved in a stepwise manner1,6, through mutations restricted to the gene encoding the enzyme dihydrofolate reductase (DHFR)7,8. Sequencing of DHFR over the time course of the experiment showed that parallel populations evolved similar mutations and acquired them in a similar order9.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The morbidostat is a continuous-culture device that automatically tunes drug concentration to maintain constant growth inhibition.
Figure 2: Parallel populations attain high levels of drug resistance in similar adaptive trajectories.
Figure 3: Unique and common genetic changes identified by whole-genome sequencing.
Figure 4: Semi-ordered acquisition of trimethoprim resistance mutations.

Accession codes

Accessions

Sequence Read Archive

References

  1. Weinreich, D.M., Delaney, N.F., Depristo, M.A. & Hartl, D.L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    CAS  Article  PubMed  Google Scholar 

  2. Bryson, V. & Szybalski, W. Microbial selection. Science 116, 45–51 (1952).

    Article  PubMed  Google Scholar 

  3. Lee, H.H., Molla, M.N., Cantor, C.R. & Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Q. et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333, 1764–1767 (2011).

    CAS  Article  PubMed  Google Scholar 

  5. Lane, P.G., Hutter, A., Oliver, S.G. & Butler, P.R. Selection of microbial mutants tolerant to extreme environmental stress using continuous culture-control design. Biotechnol. Prog. 15, 1115–1124 (1999).

    CAS  Article  PubMed  Google Scholar 

  6. Lozovsky, E.R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl. Acad. Sci. USA 106, 12025–12030 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Matthews, D.A. et al. Dihydrofolate reductase: x-ray structure of the binary complex with methotrexate. Science 197, 452–455 (1977).

    CAS  Article  PubMed  Google Scholar 

  8. Schnell, J.R., Dyson, H.J. & Wright, P.E. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev. Biophys. Biomol. Struct. 33, 119–140 (2004).

    CAS  Article  PubMed  Google Scholar 

  9. Couñago, R., Chen, S. & Shamoo, Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol. Cell 22, 441–449 (2006).

    Article  PubMed  Google Scholar 

  10. Taubes, G. The bacteria fight back. Science 321, 356–361 (2008).

    CAS  Article  PubMed  Google Scholar 

  11. Lipsitch, M., Bergstrom, C.T. & Levin, B.R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl. Acad. Sci. USA 97, 1938–1943 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Levy, S.B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).

    CAS  Article  PubMed  Google Scholar 

  13. Martinez, J.L. et al. A global view of antibiotic resistance. FEMS Microbiol. Rev. 33, 44–65 (2009).

    CAS  Article  PubMed  Google Scholar 

  14. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Yee, Y.C., Kisslinger, B., Yu, V.L. & Jin, D.J. A mechanism of rifamycin inhibition and resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 38, 133–137 (1996).

    CAS  Article  PubMed  Google Scholar 

  16. Ruiz, J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51, 1109–1117 (2003).

    CAS  Article  PubMed  Google Scholar 

  17. Chopra, I. & Roberts, M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Huovinen, P. Trimethoprim resistance. Antimicrob. Agents Chemother. 31, 1451–1456 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Girgis, H.S., Hottes, A.K. & Tavazoie, S. Genetic architecture of intrinsic antibiotic susceptibility. PLoS ONE 4, e5629 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Albert, T.J. et al. Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat. Methods 2, 951–953 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. Friedman, L., Alder, J.D. & Silverman, J.A. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob. Agents Chemother. 50, 2137–2145 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Barrick, J.E. et al. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461, 1243–1247 (2009).

    CAS  Article  PubMed  Google Scholar 

  23. Yeh, P.J., Hegreness, M.J., Aiden, A.P. & Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 460–466 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Michel, J.B., Yeh, P.J., Chait, R., Moellering, R.C. Jr. & Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc. Natl. Acad. Sci. USA 105, 14918–14923 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Demerec, M. Production of Staphylococcus strains resistant to various concentrations of penicillin. Proc. Natl. Acad. Sci. USA 31, 16–24 (1945).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 52, 11–17 (2003).

    CAS  Article  PubMed  Google Scholar 

  27. Bull, A.T. The renaissance of continuous culture in the post-genomics age. J. Ind. Microbiol. Biotechnol. 37, 993–1021 (2010).

    CAS  Article  PubMed  Google Scholar 

  28. de Crécy, E. et al. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol. 77, 489–496 (2007).

    Article  PubMed  Google Scholar 

  29. Paalme, T., Elken, R., Kahru, A., Vanatalu, K. & Vilu, R. The growth rate control in Escherichia coli at near to maximum growth rates: the A-stat approach. Antonie van Leeuwenhoek 71, 217–230 (1997).

    CAS  Article  PubMed  Google Scholar 

  30. Yeh, P., Tschumi, A.I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).

    CAS  Article  PubMed  Google Scholar 

  31. Arjan, J.A. et al. Diminishing returns from mutation supply rate in asexual populations. Science 283, 404–406 (1999).

    CAS  Article  PubMed  Google Scholar 

  32. Okusu, H., Ma, D. & Nikaido, H. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178, 306–308 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Asako, H., Nakajima, H., Kobayashi, K., Kobayashi, M. & Aono, R. Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl. Environ. Microbiol. 63, 1428–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mankin, A.S., Zyrianova, I.M., Kagramanova, V.K. & Garrett, R.A. Introducing mutations into the single-copy chromosomal 23S rRNA gene of the archaeon Halobacterium halobium by using an rRNA operon-based transformation system. Proc. Natl. Acad. Sci. USA 89, 6535–6539 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Gerrits, M.M., Berning, M., Van Vliet, A.H., Kuipers, E.J. & Kusters, J.G. Effects of 16S rRNA gene mutations on tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 47, 2984–2986 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Ross, J.I., Eady, E.A., Cove, J.H. & Cunliffe, W.J. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42, 1702–1705 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Ettayebi, M., Prasad, S.M. & Morgan, E.A. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J. Bacteriol. 162, 551–557 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Flensburg, J. & Skold, O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur. J. Biochem. 162, 473–476 (1987).

    CAS  Article  PubMed  Google Scholar 

  39. Ohmae, E., Sasaki, Y. & Gekko, K. Effects of five-tryptophan mutations on structure, stability and function of Escherichia coli dihydrofolate reductase. J. Biochem. 130, 439–447 (2001).

    CAS  Article  PubMed  Google Scholar 

  40. Smith, D.R. & Calvo, J.M. Nucleotide sequence of dihydrofolate reductase genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that dihydrofolate reductase interacts with another essential gene product. Mol. Gen. Genet. 187, 72–78 (1982).

    CAS  Article  PubMed  Google Scholar 

  41. Watson, M., Liu, J.W. & Ollis, D. Directed evolution of trimethoprim resistance in Escherichia coli. FEBS J. 274, 2661–2671 (2007).

    CAS  Article  PubMed  Google Scholar 

  42. Lunzer, M., Miller, S.P., Felsheim, R. & Dean, A.M. The biochemical architecture of an ancient adaptive landscape. Science 310, 499–501 (2005).

    CAS  Article  PubMed  Google Scholar 

  43. de Visser, J.A. & Rozen, D.E. Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics 172, 2093–2100 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Wichman, H.A., Badgett, M.R., Scott, L.A., Boulianne, C.M. & Bull, J.J. Different trajectories of parallel evolution during viral adaptation. Science 285, 422–424 (1999).

    CAS  Article  PubMed  Google Scholar 

  45. Crandall, K.A., Kelsey, C.R., Imamichi, H., Lane, H.C. & Salzman, N.P. Parallel evolution of drug resistance in HIV: failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol. Biol. Evol. 16, 372–382 (1999).

    CAS  Article  PubMed  Google Scholar 

  46. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Reva, B., Antipin, Y. & Sander, C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol. 8, R232 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 139, 707–718 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. Baym, S. Bershtein, T. Bollenbach, M. Ernebjerg, Y. Gerardin, J. Horn, A. Kocabas, C. Kocabas, D. Landgraf, R. Milo, B. Okumus, A. Palmer, J.M. Pedraza, M. Shuman, I. Wapinski, R. Ward, P. Yeh and all members of the Kishony laboratory for technical help and discussions. This work was supported in part by grants from the US National Institutes of Health (GM081617 to R.K. and GM079536 to D.L.H.) and The New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (AI057159 to R.K.). J.-B.M. is supported by a Foundational Questions in Evolutionary Biology Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

E.T., A.V., R.C., D.L.H. and R.K. designed the project. E.T. and A.V. performed the experiments and E.T., A.V., J.-B.M. and R.K. analyzed the data. All authors contributed to preparing the manuscript.

Corresponding author

Correspondence to Roy Kishony.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–3 and Supplementary Note. (PDF 2730 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toprak, E., Veres, A., Michel, JB. et al. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44, 101–105 (2012). https://doi.org/10.1038/ng.1034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1034

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing