Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes

Abstract

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3′ end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein1,2. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: U2AF1 mutations found in individuals with MDS.
Figure 2: Impact of U2AF1 mutations on clinical outcome.
Figure 3: U2AF1 p.Ser34Phe alteration induces splicing alterations in 293T cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Webb, C.J. & Wise, J.A. The splicing factor U2AF small subunit is functionally conserved between fission yeast and humans. Mol. Cell. Biol. 24, 4229–4240 (2004).

    Article  CAS  Google Scholar 

  2. Wu, S., Romfo, C.M., Nilsen, T.W. & Green, M.R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402, 832–835 (1999).

    Article  CAS  Google Scholar 

  3. Welch, J.S. et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. J. Am. Med. Assoc. 305, 1577–1584 (2011).

    Article  CAS  Google Scholar 

  4. Mardis, E.R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  Google Scholar 

  5. Link, D.C. et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. J. Am. Med. Assoc. 305, 1568–1576 (2011).

    Article  CAS  Google Scholar 

  6. Ley, T.J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  Google Scholar 

  7. Ley, T.J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2010).

    Article  CAS  Google Scholar 

  8. Wahl, M.C., Will, C.L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).

    Article  CAS  Google Scholar 

  9. Fu, Y., Masuda, A., Ito, M., Shinmi, J. & Ohno, K. AG-dependent 3′-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon. Nucleic Acids Res. 39, 4396–4404 (2011).

    Article  CAS  Google Scholar 

  10. Kralovicova, J. & Vorechovsky, I. Allele-specific recognition of the 3′ splice site of INS intron 1. Hum. Genet. 128, 383–400 (2010).

    Article  CAS  Google Scholar 

  11. Pacheco, T.R., Coelho, M.B., Desterro, J.M., Mollet, I. & Carmo-Fonseca, M. In vivo requirement of the small subunit of U2AF for recognition of a weak 3′ splice site. Mol. Cell. Biol. 26, 8183–8190 (2006).

    Article  CAS  Google Scholar 

  12. Pacheco, T.R., Moita, L.F., Gomes, A.Q., Hacohen, N. & Carmo-Fonseca, M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol. Biol. Cell 17, 4187–4199 (2006).

    Article  CAS  Google Scholar 

  13. Hudson, B.P., Martinez-Yamout, M.A., Dyson, H.J. & Wright, P.E. Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nat. Struct. Mol. Biol. 11, 257–264 (2004).

    Article  CAS  Google Scholar 

  14. Lai, W.S., Kennington, E.A. & Blackshear, P.J. Interactions of CCCH zinc finger proteins with mRNA: non-binding tristetraprolin mutants exert an inhibitory effect on degradation of AU-rich element-containing mRNAs. J. Biol. Chem. 277, 9606–9613 (2002).

    Article  CAS  Google Scholar 

  15. Liang, J., Song, W., Tromp, G., Kolattukudy, P.E. & Fu, M. Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS ONE 3, e2880 (2008).

    Article  Google Scholar 

  16. Kielkopf, C.L., Rodionova, N.A., Green, M.R. & Burley, S.K. A novel peptide recognition mode revealed by the X-ray structure of a core U2AF35/U2AF65 heterodimer. Cell 106, 595–605 (2001).

    Article  CAS  Google Scholar 

  17. Nasim, M.T. & Eperon, I.C. A double-reporter splicing assay for determining splicing efficiency in mammalian cells. Nat. Protoc. 1, 1022–1028 (2006).

    Article  CAS  Google Scholar 

  18. Graubert, T.A. et al. Integrated genomic analysis implicates haploinsufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syndromes pathogenesis. PLoS ONE 4, e4583 (2009).

    Article  Google Scholar 

  19. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  Google Scholar 

  20. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  Google Scholar 

  21. Ebert, B.L. et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  CAS  Google Scholar 

  22. Langemeijer, S.M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 41, 838–842 (2009).

    Article  CAS  Google Scholar 

  23. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  Google Scholar 

  24. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  Google Scholar 

  25. Gelsi-Boyer, V. et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol. 145, 788–800 (2009).

    Article  CAS  Google Scholar 

  26. Walter, M.J. et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 25, 1153–1158 (2011).

    Article  CAS  Google Scholar 

  27. Golling, G. et al. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31, 135–140 (2002).

    Article  CAS  Google Scholar 

  28. Rudner, D.Z., Kanaar, R., Breger, K.S. & Rio, D.C. Mutations in the small subunit of the Drosophila U2AF splicing factor cause lethality and developmental defects. Proc. Natl. Acad. Sci. USA 93, 10333–10337 (1996).

    Article  CAS  Google Scholar 

  29. Zorio, D.A. & Blumenthal, T. U2AF35 is encoded by an essential gene clustered in an operon with RRM/cyclophilin in Caenorhabditis elegans. RNA 5, 487–494 (1999).

    Article  CAS  Google Scholar 

  30. Grosso, A.R., Martins, S. & Carmo-Fonseca, M. The emerging role of splicing factors in cancer. EMBO Rep. 9, 1087–1093 (2008).

    Article  CAS  Google Scholar 

  31. David, C.J. & Manley, J.L. Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev. 24, 2343–2364 (2010).

    Article  CAS  Google Scholar 

  32. Visconte, V. et al. SF3B1, a splicing factor, is frequently mutated in refractory anemia with ring sideroblasts. Leukemia published online (2 September 2011), doi:10.1038/leu.2011.232.

  33. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  Google Scholar 

  34. Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

    Article  CAS  Google Scholar 

  35. Ding, L. et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464, 999–1005 (2010).

    Article  CAS  Google Scholar 

  36. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  37. Ye, K., Schulz, M.H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

    Article  CAS  Google Scholar 

  38. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  39. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  40. Baum, L.E. & Eagon, J.A. An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology. Bull. Am. Math. Soc. 73, 360–363 (1967).

    Article  Google Scholar 

  41. Chen, K. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods 6, 677–681 (2009).

    Article  CAS  Google Scholar 

  42. Koboldt, D.C. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285 (2009).

    Article  CAS  Google Scholar 

  43. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

  44. Ng, P.C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  Google Scholar 

  45. Dennis, G. Jr. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, P3 (2003).

    Article  Google Scholar 

  46. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  47. Fortier, J.M. et al. POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature. Leukemia 24, 950–957 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants R01HL082973 (T.A.G.), RC2HL102927 (T.A.G.), U54HG003079 (R.K.W.) and P01CA101937 (T.J.L.) and a Howard Hughes Medical Institute Physician-Scientist Early Career Award (M.J.W.). Technical assistance was provided by the Alvin J. Siteman Cancer Center High Speed Cell Sorting Core, the Molecular and Genomic Analysis Core, the Biomedical Informatics Core and the Tissue Procurement Core, which are all supported by the National Cancer Institute Cancer Center Support Grant P30CA91842. Additional technical assistance was provided by M. Izumi. We thank K. Ohno (Nagoya University Graduate School of Medicine, Japan) for minigene constructs. We thank K. Hall (Washington University School of Medicine) for helpful scientific discussions.

Author information

Authors and Affiliations

Authors

Contributions

The project leaders were T.A.G., D.S., L.D. and M.J.W. Study design and project conception were performed by T.A.G., L.D., D.C.L., M.H.T., P.W., J.F.D., E.R.M., T.J.L., R.K.W. and M.J.W. Sequence and data analysis were performed by D.S., L.D., C.C.H., D.C.K., D.E.L., M.D.M., D.J.D., R.M.A., R.S.F., H.S., J.K.-V. and M.O. In vitro splicing assays, PCR or gene expression analyses were performed by T.O.-O., C.L.L., J.S., K.K. and T.N. Clinical data management, specimen acquisition or statistical analyses were performed by M.G., S.H. and J.B. Hematopathology was performed by J.L.F. Manuscript preparation was performed by T.A.G., D.S., L.D., D.C.L., J.F.D., E.R.M., T.J.L., R.K.W. and M.J.W.

Corresponding author

Correspondence to Matthew J Walter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–4 and Supplementary Tables 1–9 (PDF 8748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graubert, T., Shen, D., Ding, L. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 44, 53–57 (2012). https://doi.org/10.1038/ng.1031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1031

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing