Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Function of N2 Methylguanine in Phenylalanine Transfer RNA

Abstract

ONE approach to determine the specific nucleotides primarily involved in the recognition of a tRNA by an aminoacyl tRNA synthetase is to compare the sequences of several tRNAs aminoacylated by a single synthetase and look for common nucleotides at specific sites. Using this approach we have compared the sequences of eight tRNAs of Table 1, all aminoacylated by yeast phenylalanyl tRNA synthetase1–5 (PRS) and have proposed that the recognition site for this synthetase consists primarily of the nucleotides of the double stranded region adjacent to the dihydrouridine loop (diHU stem region) and adenosine at the fourth position from the 3′ end (Fig. 1)5. This conclusion was supported by the observation that tRNAs which have all of the boldface nucleotides of Fig. 1, but which lack either adenosine at position four, or the specific nucleotides of the diHU stem region, are not aminoacylated by PRS5. These observations demonstrated the absolute requirement for both the specific nucleotides of the diHU stem region and adenosine at position four from the 3′ end. Finally, this proposal is supported by chemical modifications of tRNAs amino-acylated by PRS6–12 and by recent sequence determinations of tRNAs aminoacylated by PRS13, including Escherichia coil tRNA1Ala (R. Williams, W. Nagel, B. R., and B. D., in preparation).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Dudock, B. S., DiPeri, C., and Michael, M. S., J. biol. Chem. 245, 2465 (1970).

    CAS  PubMed  Google Scholar 

  2. Taglang, R., Waller, J. P., Befort, N., and Fasiolo, F., Eur. J. Biochem., 12, 550 (1970).

    Article  CAS  Google Scholar 

  3. Dudock, B., DiPeri, C., Scileppi, K., and Reszelbach, R., Proc. natn. Acad. Sci. U.S.A., 68, 681 (1971).

    Article  CAS  Google Scholar 

  4. Roe, B., Sirover, M., Williams, R., and Dudock, B., Archs Biochem. Biophys., 147, 176 (1971).

    Article  CAS  Google Scholar 

  5. Roe, B., and Dudock, B., Biochem. biophys. Res. Commun., 49, 399 (1972).

    Article  CAS  Google Scholar 

  6. Igo-Kemenes, T., and Zachau, H. G., Eur. J. Biochem., 10, 549 (1969).

    Article  CAS  Google Scholar 

  7. Schmidt, J., Buchardt, B., and Reid, B. R., J. biol. Chem., 245, 5743 (1970).

    CAS  PubMed  Google Scholar 

  8. Philippsen, P., Thiebe, R., Wintermeyer, W., and Zachau, H. G., Biochem. biophys. Res. Commun., 33, 922 (1968).

    Article  CAS  Google Scholar 

  9. Litt, M., and Greenspan, C. M., Biochemistry, N.Y., 11, 1437 (1972).

    Article  CAS  Google Scholar 

  10. Samuelson, G., and Keller, E. B., Biochemistry, N.Y., 11, 30 (1972).

    Article  CAS  Google Scholar 

  11. Kumar, S. A., Krauskopf, M., and Ofengand, J., J. Biochem., Tokyo (in the press).

  12. Thiebe, R., Harbers, K., and Zachau, H. G., Eur. J. Biochem., 26, 144 (1972).

    Article  CAS  Google Scholar 

  13. Keith, G., Picaud, F., Weissenbach, J., Ebel, J. P., Petrissant, G., and Dirheimer, G., FEBS Lett., 31, 345 (1973).

    Article  CAS  Google Scholar 

  14. Roe, B., Sirover, M., and Dudock, B., Biochemistry, N.Y. (in the press).

  15. Litt, M., Biochemistry, N.Y., 10, 2223 (1971).

    Article  CAS  Google Scholar 

  16. Kerr, S., Proc. natn. Acad. Sci. U.S.A., 68, 406 (1971).

    Article  CAS  Google Scholar 

  17. Katz, G., and Dudock, B. S., J. biol. Chem., 244, 3062 (1969).

    CAS  PubMed  Google Scholar 

  18. Kuchino, Y., and Nishimura, S., Biochem. biophys. Res. Commun., 40, 306 (1970).

    Article  CAS  Google Scholar 

  19. Zachau, H. G., Angew. Chem. Int. Ed., 8, 711 (1969).

    Article  CAS  Google Scholar 

  20. Gillam, I., Blew, D., Warrington, R. C., von Tigerstrom, M., and Tener, G. M., Biochemistry, 7, 3459 (1968).

    Article  CAS  Google Scholar 

  21. Barrell, B. G., and Sanger, F., FEBS Lett., 3, 275 (1969).

    Article  CAS  Google Scholar 

  22. Harada, F., Kimura, F., and Nishimura, S., Biochemistry, 10, 3269 (1971).

    Article  CAS  Google Scholar 

  23. Schmidt, J., Wang, R., Stanfield, S., and Reid, B. R., Biochemistry, N.Y., 10, 3264 (1971).

    Article  CAS  Google Scholar 

  24. Roe, B., Marcu, K., and Dudock, B., Biochim. biophys. Acta (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ROE, B., MICHAEL, M. & DUDOCK, B. Function of N2 Methylguanine in Phenylalanine Transfer RNA. Nature New Biology 246, 135–138 (1973). https://doi.org/10.1038/newbio246135a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio246135a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing