Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Investigation of Early Mammalian Development using Interspecific Chimaeras between Rat and Mouse


THE analysis of genetic mosaics has allowed inferences to be made about several otherwise elusive aspects of development including cell determination, division rates, lineage and deployment, and the sizes of pools of precursor cells destined to form particular organs and tissues. The most significant results have been achieved using insect mosaics arising in early development from spontaneous or induced genetic modification of one cell1, 2. Extensive genetic mosaicism may also occur in mammals either arising spontaneously during development as a result of random × chromosome inactivation in female embryos3 or by the experimental combination of embryos of different genotype to form chimaeras4–6. Human or mouse mosaics carrying enzymic, chromosomal or pigmentation markers have been used in several investigations into cell lineage and the size of precursor pools of cells. Use of these markers often, however, involves analysis long after the critical developmental events have taken place, and so the results are likely to be distorted by differential proliferation, migration, and death of cells. Furthermore. many of the available markers have only a limited tissue distribution and, with the exception of those involving pigmentation, differentiation of photoreceptors, and isoenzymes of β-glucuronidase7–9, only yield estimates of the ratio of cells in mosaic tissues and provide no information about their spatial arrangement. Therefore some of the conclusions drawn from analyses of mammalian mosaics have been based on assumptions of questionable validity10–13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout


  1. Sturtevant, A. H., Z. wiss. Zool., 135, 323 (1929).

    Google Scholar 

  2. Nöthiger, R., in The Biology of Imaginal Disks (edit, by Urspring, H., and Nöthiger, R.), 1 (Verlag, Berlin, 1972).

    Book  Google Scholar 

  3. Lyon, M. F., Biol. Rev., 47, 1 (1972).

    Article  CAS  Google Scholar 

  4. Tarkowski, A. K., Nature, 190, 857 (1961).

    Article  CAS  Google Scholar 

  5. Mintz, B., Am. Zool., 2, 145 (1962).

    Google Scholar 

  6. Gardner, R. L., Nature, 220, 596 (1968).

    Article  CAS  Google Scholar 

  7. Condamine, H., Custer, R. P., and Mintz, B., Proc. natn. Acad. Sci., U.S.A., 68, 2032 (1971).

    Article  CAS  Google Scholar 

  8. Mintz, B., in Control Mechanisms of Growth and Differentiation (edit, by Davies, D. D., and Balls, M.), 345 (Cambridge University, Cambridge, 1971).

    Google Scholar 

  9. Wegmann, T. G., Lavail, M. M., and Sidman, R. L., Nature, 230, 333 (1971).

    Article  Google Scholar 

  10. Wolpert, L., and Gingell, D., J. theor. Biol., 29, 147 (1970).

    Article  CAS  Google Scholar 

  11. Nesbitt, M. N., and Gartler, S. M., A. Rev. Genet., 5, 143 (1971).

    Article  CAS  Google Scholar 

  12. Lewis, J. H., Summerbell, D., and Wolpert, L., Nature, 239, 276 (1972).

    Article  CAS  Google Scholar 

  13. McLaren, A., Nature, 239, 274 (1972).

    Article  CAS  Google Scholar 

  14. Gardner, R. L., in Advances in the Biosciences, 6 (edit, by Raspe, G.), 279 (Pergamon, Oxford, 1971).

    Google Scholar 

  15. Wroblewska, J., and Dyban, A. P., Stain Technol., 44, 147 (1969).

    Article  Google Scholar 

  16. Sainte-Marie, G., J. Histochem. Cytochem., 10, 250 (1962).

    Article  Google Scholar 

  17. Johnson, M. H., Fert. Steril., 23, 929 (1972).

    Article  CAS  Google Scholar 

  18. Gardner, R. L., Papaioannou, V. E., and Barton, S., J. Embryol. exp. Morphol., (in the press).

  19. Tarkowski, A. K., J. Embryol. exp. Morphol., 10, 476 (1962).

    CAS  PubMed  Google Scholar 

  20. Kirby, D. R. S., Nature, 194, 785 (1962).

    Article  CAS  Google Scholar 

  21. Mulnard, J. G., Cr. hebd. Séanc. Acad. Sci., Paris, 276, 379 (1973).

    CAS  Google Scholar 

  22. Stern, M. S., Nature, 243, 472 (1973).

    Article  CAS  Google Scholar 

  23. Zeilmaker, G. H., Nature, 242, 115 (1973).

    Article  CAS  Google Scholar 

  24. Moscona, A. A., in Cells and Tissues in Culture, 1 (edit, by Willmer, E. N.), 489 (Academic, London, 1965).

    Book  Google Scholar 

  25. Gardner, R. L., and Lyon, M. F., Nature, 231, 385 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

GARDNER, R., JOHNSON, M. Investigation of Early Mammalian Development using Interspecific Chimaeras between Rat and Mouse. Nature New Biology 246, 86–89 (1973).

Download citation

  • Received:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing