Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

On Estimating Functional Gene Number in Eukaryotes

Abstract

MANY recent studies have been concerned with the construction of biological model systems to describe adequately regulation of gene action during development of eukaryotes1–5. The number of genes in mammals and Drosophila has been suggested to be 1 to 2 orders of magnitude less than the amount of available DNA per haploid genome could provide2–7. Although Drosophila and mammalian nuclei contain enough unique DNA to specify for respectively 105 and 106 genes of 1,000 nucleotide pairs8,9, it has been argued that a much lower estimate of functional gene number is more reasonable2–7. Conversely, these conclusions indicate that more than 90% of the eukaryotic genome may be composed of nonfunctional or noninformational “junk” DNA. Here we demonstrate these estimations have not been fundamentally proven; rather they are based on simplifying assumptions of questionable validity, in some cases contradictory to experimental data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tomkins, G. M., Gelehrter, T. D., Granner, D., Martin, D., Samuels, H. H., and Thompson, E. B., Science, 166, 1474 (1969).

    Article  CAS  PubMed  Google Scholar 

  2. Britten, R. J., and Davidson, E. H., Science, 165, 349 (1969).

    Article  CAS  PubMed  Google Scholar 

  3. Ohno, S., Nature, 234, 134 (1971).

    Article  CAS  Google Scholar 

  4. Ohno, S., Devel. Biol., 11, 131 (1972).

    Article  Google Scholar 

  5. Crick, F., Nature, 234, 25 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Ohta, T., and Kimura, M., Nature, 233, 118 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Muller, H. J., in Heritage from Mendel (edit, by Brink, R. A.), 419 (University of Wisconsin Press, Madison, 1967).

    Google Scholar 

  8. Laird, D. C., and McCarthy, B. J., Genetics, 63, 865 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Britten, R. J., and Kohne, D. E., Science, 161, 529 (1968).

    Article  CAS  PubMed  Google Scholar 

  10. Judd, B. H., Shen, M. W., and Kaufman, T. C., Genetics, 71, 139 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallace, B., Topics in Population Genetics, 45 (W. W. Norton and Co., New York, 1968).

    Google Scholar 

  12. Herskowitz, I. H., Amer. Natur., 84, 225 (1950).

    Article  Google Scholar 

  13. O'Brien, S. J., and Maclntyre, R. J., Drosophila Information Service, 46, 89 (1971).

    Google Scholar 

  14. Lindsley, D., and Grell, E. H., Genetics Variations of Drosophila melanogaster (Carnegie Inst. Publ. No. 627, 1967).

    Google Scholar 

  15. O'Brien, S. J., Maclntyre, R. J., Genetics, 71, 127 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ritossa, F., Malva, C., Boncinelli, E., Graziani, F., and Polito, L., Proc. US Nat. Acad. Sci., 68, 1580 (1971).

    Article  CAS  Google Scholar 

  17. Lefevre, G., Genetics, 63, 589 (1969).

    PubMed  PubMed Central  Google Scholar 

  18. Richmond, R., Nature, 225, 1025 (1970).

    Article  CAS  PubMed  Google Scholar 

  19. Arnheim, N., and Taylor, C. E., Nature, 223, 900 (1969).

    Article  CAS  PubMed  Google Scholar 

  20. Sved, J. A., Amer. Nat., 102, 283 (1968).

    Article  Google Scholar 

  21. Smith, J. M., Nature, 219, 1114 (1968).

    Article  CAS  PubMed  Google Scholar 

  22. Milkman, R. D., Genetics, 55, 493 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Muller, H. J., Amer. J. Hum. Genet., 2, 111 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kojima, K., and Tobari, Y., Genetics, 63, 639 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Brien, S. J., and Maclntyre, R. J., Nature, 230, 335 (1971).

    Article  CAS  PubMed  Google Scholar 

  26. Edmonds, M., Vaughan, M. H., and Nokatzato, H., Proc. US Nat. Acad. Sci., 68, 1336 (1971).

    Article  CAS  Google Scholar 

  27. Lee, Y. S., Mendecki, J., and Brawerman, G., Proc. US Nat. Acad. Sci., 68, 1331 (1971).

    Article  CAS  Google Scholar 

  28. Darnell, J. E., Wall, R., and Tushinski, R. J., Proc. US Nat. Acad. Sci., 68, 1321 (1971).

    Article  CAS  Google Scholar 

  29. Edmonds, M., and Abrams, R., J. Biol. Chem., 235, 1142 (1960).

    CAS  PubMed  Google Scholar 

  30. Niessing, J., and Sekeris, C. E., FEBS Lett., 22, 83 (1972).

    Article  CAS  PubMed  Google Scholar 

  31. Darnell, J. E., Philipson, L., Wall, R., and Adesnik, M., Science, 174, 507 (1971).

    Article  CAS  PubMed  Google Scholar 

  32. Shenkin, A., and Burdon, R. H., FEBS Lett., 22, 157 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. Firtel, R. A., J. Mol. Biol., 66, 363 (1972).

    Article  CAS  PubMed  Google Scholar 

  34. Firtel, R. A., and Bonner, J., J. Mol. Biol., 66, 339 (1972).

    Article  CAS  PubMed  Google Scholar 

  35. Hahn, W. E., and Laird, C. D., Science, 173, 158 (1971).

    Article  CAS  PubMed  Google Scholar 

  36. Soeiro, R., Vaughan, M. H., Warner, J. R., and Darnell, J. E., J. Cell Biol., 39, 112 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, F., Wallis, B., and Denniston, C., Drosophila Information Service, 41, 159 (1966).

    Google Scholar 

  38. Johnson, F. M., Drosophila Information Service, 41, 157 (1966).

    Google Scholar 

  39. Bell, J. B., Maclntyre, R. J., and Olivieri, A., Biochem. Genet., 6, 205 (1972).

    Article  CAS  PubMed  Google Scholar 

  40. Glassman, E., Fed. Proc., 24 (Suppl. 14–15), 1243 (1965).

    CAS  PubMed  Google Scholar 

  41. Dickinson, W. J., Genetics, 66, 487 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Grell, E., Ann. NY Acad. Sci., 151, 441 (1968).

    Article  CAS  PubMed  Google Scholar 

  43. Sofer, W., and Hatkoff, M. A., Genetics, 72, 545 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tobari, Y., and Kojima, K., Genetics, 70, 347 (1972).

    Google Scholar 

  45. Ritossa, F. M., Atwood, K. C., and Spiegelman, S., Genetics, 54, 819 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Baglioni, C., Nature, 184, 1084 (1959).

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh, D., and Forrest, H. S., Genetics, 55, 423 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'BRIEN, S. On Estimating Functional Gene Number in Eukaryotes. Nature New Biology 242, 52–54 (1973). https://doi.org/10.1038/newbio242052a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/newbio242052a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing