

Fig. 1 Merocyanine dye.
light of wavelengths longer than 590 nm was measured with a photodiode at right angles to the incident beam. The stimulus current was passed between internal and external platinized platinum electrodes and the action potential was recorded with a second internal electrode.

Fig. 2 illustrates the simultaneous measurement of fluorescence intensity (a) and membrane potential (b), in a single oscilloscope sweep. The intensity increase during the spike represented a change in the resting fluorescence of about one part in 10^{3}, five times larger than the largest change previously measured. Although the fluorescence increase appeared to be somewhat slower than the potential change, this mainly resulted from high frequency filtering of the optical signal. Measurements with better time resolution, using voltageclamp steps and signal averaging, showed that this mero-

Fig. 2 Simultaneous measurement of fluorescent intensity (a) and membrane potential (b). The fluorescence increase during the action potential is quite large. The figure was made from a photograph of a single sweep on a dual beam oscilloscope. The response time constant of the light measuring system was 0.56 ms . The vertical arrow to the right of the trace represents the stated value of the change in intensity divided by the resting intensity. Axon diameter, $400 \mu \mathrm{~m}$. Temperature, $14^{\circ} \mathrm{C}$.
cyanine fluorescence change followed the potential with a time lag of less than 0.15 ms . Combined voltage-clamp and intensity measurements were also used to show that the fluorescence change resulted from the change in membrane potential and not from the ionic currents or conductance increases that also occur during the action potential. The axon fluorescence was linearly dependent upon membrane potential. We did not detect any deleterious effect of the dye mixture on the axon.

It is clear from Fig. 2 that the fluorescence measurement was adequate for determining the occurrence of action potentials in the giant axon. We think this dye will also allow non-destructive monitoring of membrane potential in systems where electrodes cannot be used. It might be possible to measure changes in membrane potential of mammalian erythrocytes or the inward spread of potential in the transverse tubular system of muscle. A further application, involving invertebrate ganglia, has been suggested to us which we plan to pursue. An apparatus with a large number of photodiodes, arranged so that each detector would receive the light from an individual cell body, could, with a small computer, monitor the activity of, perhaps, a hundred cells at once. Such a large increase in the number of monitored
cells would facilitate the determination of functional connexions between cells, and ultimately lead to an understanding of the neuronal basis of behaviour.

We thank Gary Strichartz and David Gilbert for helpful advice. This work was supported by the National Institute of Neurological Diseases and Stroke. H. V. D. is a fellow of the Venezuelan Institute for Scientific Research.

H. V. Davila
B. M. Salzberg
L. B. Cohen

Department of Physiology,

Yale University School of Medicine,
New Haven, Connecticut 06510, and
The Marine Biological Laboratory, Woods Hole, Massachusetts
A. S. Waggoner

Department of Chemistry, Amherst College, Antherst, Massachusetts
Received August 9, 1972.
${ }^{1}$ Cohen, L. B., Keynes, R. D., and Hille, B., Nature, 218, 438 (1968).
${ }^{2}$ Tasaki, I., Watanabe, A., Sandlin, R., and Carnay, L., Proc. US Nat. Acad. Sci., 61, 883 (1968).
${ }^{3}$ Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D., and Rojas, E., J. Physiol., 218, 205 (1971).
${ }^{4}$ Cohen, L. B., Keynes, R. D., and Landowne, D., J. Physiol. 224, 727 (1972).
${ }^{5}$ Tasaki, I., Watanabe, A., and Hallett, M., J. Memb. Biol., 8, 109 (1972).
${ }^{6}$ Brooker, L. G. S., Craig, A. C., Heseltine, D. W., Jenkins, P. W., and Lincoln, L. C., J. Amer. Chem. Soc., 87, 2443 (1965).
${ }^{7}$ Cohen, L. B., Keynes, R. D., and Landowne, D., J. Physiol. 224, 701 (1972).
${ }^{8}$ Emrich, H. M., Junge, W., and Witt, H. T., Naturwissenschaften, 56, 514 (1969).

Addendum to Welch et al., page 143

Note added in proof. Recently, other investigators ${ }^{27-31}$ have reported the use of urea and of anionic detergents as components of "banding cocktails". Simple aqueous detergent solutions, either anionic or cationic, have been used by some ${ }^{28,29}$, apparently unsuccessfully. Meanwhile, our further results show that cationic detergents also produce banding in human chromosomes, though less effectively than strongly anionic detergents.
27 Berger, R., C.R. Acad. Sci. (Paris), 273 (series D), 2620 (1971).
${ }_{28}$ Kato, H., and Moriwaki, K., Chromosoma (Berlin), 38, 105 (1972).
29 Kato, H., and Yosida, T., Chromosoma (Berlin), 36, 272 (1972).
${ }^{30}$ Shiraishi, Y., and Yosida, T., Chromosoma (Berlin), 37, 75 (1972).
31 Yosida, T., and Sagai, T., Chromosoma (Berlin), 37, 387 (1972).

Editorial, Advertising and Publishing Offices of NATURE
MACMILLAN JOURNALS LIMITED
4 LITTLE ESSEX STREET, LONDON WC2R 3LF
Telephone Number: 01-836 6633. Telegrams: Phusis London WC2R 3LF Telex 262024
MACMILLAN JOURNALS LIMITED
711 NATIONAL PRESS BUILDING
WASHINGTON DC 20004
Telephone Number: 202-737 2355. Telex 64280
International Advertisement Manager
PETER R. KAVANAGH
MACMILLAN JOURNALS LIMITED
4 LITTLE ESSEX STREET, LONDON WC2R 3LF
Telephone Numbers: UK 01-836 6633
USA 202-737 2355
Subscription Department
MACMILLAN JOURNALS LIMITED
BRUNEL ROAD, BASINGSTOKE, HANTS RG21 2XS
Telephone Number: Basingstoke 29242
Classified advertisements
T. G. SCOTT \& SON, LIMITED

1 CLEMENT'S INN, LONDON WC2A 2ED
Telephone Number: 01-242 6264/01-405 4743
Telegrams: Textualist London WC2A 2ED
Registered as a newspaper at the Post Office
Copyright (C) Macmillan Journals Limited, January 311973

