Beyond-intercalation batteries promise a step-change in energy storage compared to intercalation-based lithium-ion and sodium-ion batteries. However, only performance metrics that include all cell components and operation parameters can tell whether a true advance over intercalation batteries has been achieved.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes
Nature Communications Open Access 15 September 2021
-
Architectured ZnO–Cu particles for facile manufacturing of integrated Li-ion electrodes
Scientific Reports Open Access 24 July 2020
-
Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
Nature Communications Open Access 29 March 2019
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.


References
Larcher, D. & Tarascon, J.-M. Nat. Chem. 7, 19–29 (2014).
Choi, J. W. & Aurbach, D. Nat. Rev. Mater. 1, 16013 (2016).
Whittingham, M. S. Chem. Rev. 114, 11414–11443 (2014).
Obrovac, M. N. & Chevrier, V. L. Chem. Rev. 114, 11444–11502 (2014).
Chevrier, V. L. & Ceder, G. J. Electrochem. Soc. 158, A1011–A1014 (2011).
Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Electrochem. Solid State Lett. 4, A137–A140 (2001).
Cabana, J., Monconduit, L., Larcher, D. & Palacín, M. R. Adv. Mater. 22, E170–E192 (2010).
Yabuuchi, N. et al. ChemElectroChem 1, 580–589 (2014).
Sun, Y., Liu, N. & Cui, Y. Nat. Energy 1, 16071 (2016).
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Nat. Mater. 11, 19–29 (2012).
Luntz, A. C. & McCloskey, B. D. Chem. Rev. 114, 11721–11750 (2014).
Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Nat. Energy 1, 16132 (2016).
Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Nat. Energy 1, 16128 (2016).
Gogotsi, Y. & Simon, P. Science 334, 917–918 (2011).
Liu, T. et al. Science 350, 530–533 (2015).
Oh, S. H., Black, R., Pomerantseva, E., Lee, J.-H. & Nazar, L. F. Nat. Chem. 4, 1004–1010 (2012).
McCloskey, B. D. J. Phys. Chem. Lett. 6, 4581–4588 (2015).
Eroglu, D., Zavadil, K. R. & Gallagher, K. G. J. Electrochem. Soc. 162, A982–A990 (2015).
Clément, R. J., Bruce, P. G. & Grey, C. P. J. Electrochem. Soc. 162, A2589–A2604 (2015).
Chan, M. K. Y., Wolverton, C. & Greeley, J. P. J. Am. Chem. Soc. 134, 14362–14374 (2012).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Freunberger, S. True performance metrics in beyond-intercalation batteries. Nat Energy 2, 17091 (2017). https://doi.org/10.1038/nenergy.2017.91
Published:
DOI: https://doi.org/10.1038/nenergy.2017.91
This article is cited by
-
Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes
Nature Communications (2021)
-
Architectured ZnO–Cu particles for facile manufacturing of integrated Li-ion electrodes
Scientific Reports (2020)
-
A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion
Nature Catalysis (2019)
-
Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes
Nature Communications (2019)
-
Thousands of cycles
Nature Materials (2019)