Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Making Li-metal electrodes rechargeable by controlling the dendrite growth direction

Abstract

The long-standing issue of Li-dendrite formation and growth during repeated plating or stripping processes prevents the practical application of Li-metal anodes for high-specific-energy batteries. Here we develop an approach to control dendrite growth by coating the separator with functionalized nanocarbon (FNC) with immobilized Li ions. During cycling, the Li dendrites grow toward each other simultaneously from both the FNC layer on the separator and the Li-metal anode; when the dendrites meet, the growth changes direction: rather than penetrating the separator, a dense Li layer is formed between the separator and the Li anode. This controlled growth alleviates the solid electrolyte interphase formation, reduces the decomposition of the electrolyte, and improves the cyclability of the Li-metal cell. In a Li/LiFePO4 coin cell with three different electrolytes, we show that this approach enables a long stable cycle life (>800 cycles with 80% retention of the initial capacity) and improved efficiency (>97%). Our method offers promise for application in practical Li-metal batteries, and it may also be useful for tackling dendrite issues for other metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dendrite growth in both a blank cell and a FNC cell.
Figure 2: SEM images of the separators and the Li-metal surfaces.
Figure 3: In situ TEM experimental set-up and results.
Figure 4: Electrochemical performance of blank and FNC cells.
Figure 5: Li cycling efficiency results.
Figure 6: Electrochemical impedance spectroscopy results.
Figure 7: Rate performance of blank and FNC cells.

Similar content being viewed by others

References

  1. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    Article  Google Scholar 

  2. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  3. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  Google Scholar 

  4. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004).

    Article  Google Scholar 

  5. Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1459 (1974).

    Article  Google Scholar 

  6. Epelboin, I., Froment, M., Garreau, M., Thevenin, J. & Warin, D. Behavior of secondary lithium and aluminum-lithium electrodes in propylene carbonate. J. Electrochem. Soc. 127, 2100–2104 (1980).

    Article  Google Scholar 

  7. Rauh, R. D. & Brummer, S. B. The effect of additives on lithium cycling in propylene carbonate. Electrochim. Acta 22, 75–83 (1977).

    Article  Google Scholar 

  8. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    Article  Google Scholar 

  9. Aurbach, D. et al. Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 149, A1267–A1277 (2002).

    Article  Google Scholar 

  10. Zheng, G. et al. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotech. 9, 618–623 (2014).

    Article  Google Scholar 

  11. Shui, J.-L. et al. Reversibility of anodic lithium in rechargeable lithium–oxygen batteries. Nat. Commun. 4, 2255–2261 (2013).

    Article  Google Scholar 

  12. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362–6370 (2015).

    Article  Google Scholar 

  13. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436–7444 (2015).

    Article  Google Scholar 

  14. Mukherjee, R. et al. Defect-induced plating of lithium metal within porous graphene networks. Nat. Commun. 5, 3710–3719 (2014).

    Article  Google Scholar 

  15. Yang, C.-P., Yin, Y.-X., Zhang, S.-F., Li, N.-W. & Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058–8066 (2015).

    Article  Google Scholar 

  16. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    Article  Google Scholar 

  17. Monroe, C. & Newman, J. Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J. Electrochem. Soc. 150, A1377–A1384 (2003).

    Article  Google Scholar 

  18. Rosso, M., Chassaing, E., Chazalviel, J. N. & Gobron, T. Onset of current-driven concentration instabilities in thin cell electrodeposition with small inter-electrode distance. Electrochim. Acta 47, 1267–1273 (2002).

    Article  Google Scholar 

  19. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  Google Scholar 

  20. Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B. & Tarascon, J. M. Lithium metal stripping/plating mechanisms studies: a metallurgical approach. Electrochem. Commun. 8, 1639–1649 (2006).

    Article  Google Scholar 

  21. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    Article  Google Scholar 

  22. Ishikawa, M., Kawasaki, H., Yoshimoto, N. & Morita, M. Pretreatment of Li-metal anode with electrolyte additive for enhancing Li cycleability. J. Power Sources 146, 199–203 (2005).

    Article  Google Scholar 

  23. Ding, F., Liu, Y. & Hu, X. 1,3-dioxolane pretreatment to improve the interfacial characteristics of a lithium anode. Rare Metals 25, 297–302 (2006).

    Article  Google Scholar 

  24. Kanamura, K., Tamura, H., Shiraishi, S. & Takehara, Z.-i. Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes. J. Electroanal. Chem. 394, 49–62 (1995).

    Article  Google Scholar 

  25. Fujieda, T. et al. Surface of lithium electrodes prepared in Ar + CO2 gas. J. Power Sources 52, 197–200 (1994).

    Article  Google Scholar 

  26. Kanamura, K., Okagawa, T. & Takehara, Z.-i. Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes. J. Power Sources 57, 119–123 (1995).

    Article  Google Scholar 

  27. Choi, N.-S., Lee, Y. M., Park, J. H. & Park, J.-K. Interfacial enhancement between lithium electrode and polymer electrolytes. J. Power Sources 119–121, 610–616 (2003).

    Article  Google Scholar 

  28. Lee, Y. M., Choi, N.-S., Park, J. H. & Park, J.-K. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources 119–121, 964–972 (2003).

    Article  Google Scholar 

  29. Choi, N.-S., Lee, Y. M., Seol, W., Lee, J. A. & Park, J.-K. Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte. Solid State Ion. 172, 19–24 (2004).

    Article  Google Scholar 

  30. Zu, C. & Manthiram, A. Stabilized lithium–metal surface in a polysulfide-rich environment of lithium–sulfur batteries. J. Phys. Chem. Lett. 5, 2522–2527 (2014).

    Article  Google Scholar 

  31. Huggins, R. A. Lithium alloy negative electrodes formed from convertible oxides. Solid State Ion. 113–115, 57–67 (1998).

    Article  Google Scholar 

  32. Bang, H. J., Kim, S. & Prakash, J. Electrochemical investigations of lithium-aluminum alloy anode in Li/polymer cells. J. Power Sources 92, 45–49 (2001).

    Article  Google Scholar 

  33. Richardson, T. J. & Chen, G. Solid solution lithium alloy cermet anodes. J. Power Sources 174, 810–812 (2007).

    Article  Google Scholar 

  34. Kim, H. et al. Enhancing performance of Li–S cells using a Li–Al alloy anode coating. Electrochem. Commun. 36, 38–41 (2013).

    Article  Google Scholar 

  35. Zhang, X. et al. Improved cycle stability and high security of Li–B alloy anode for lithium-sulfur battery. J. Mater. Chem. A 2, 11660–11665 (2014).

    Article  Google Scholar 

  36. Cheng, X.-B., Peng, H.-J., Huang, J.-Q., Wei, F. & Zhang, Q. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium–sulfur batteries. Small 10, 4257–4263 (2014).

    Google Scholar 

  37. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    Article  Google Scholar 

  38. Panday, A. et al. Effect of molecular weight and salt concentration on conductivity of block copolymer electrolytes. Macromolecules 42, 4632–4637 (2009).

    Article  Google Scholar 

  39. Gomez, E. D. et al. Effect of ion distribution on conductivity of block copolymer electrolytes. Nano Lett. 9, 1212–1216 (2009).

    Article  Google Scholar 

  40. Xu, F. et al. Enhanced Pt/C catalyst stability using p-benzensulfonic acid functionalized carbon blacks as catalyst supports. Electrochim. Acta 94, 172–181 (2013).

    Article  Google Scholar 

  41. Li, Z.-F. et al. Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance. Nano Energy 16, 281–292 (2015).

    Article  Google Scholar 

  42. He, H. et al. Failure investigation of LiFePO4 cells in over-discharge conditions. J. Electrochem. Soc. 160, A793–A804 (2013).

    Article  Google Scholar 

  43. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface chemistry, surface morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).

    Article  Google Scholar 

  44. Yamaki, J.-i. et al. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power Sources 74, 219–227 (1998).

    Article  Google Scholar 

  45. Narayanan, S. R., Shen, D. H., Surampudi, S., Attia, A. I. & Halpert, G. Electrochemical impedance spectroscopy of lithium–titanium disulfide rechargeable cells. J. Electrochem. Soc. 140, 1854–1861 (1993).

    Article  Google Scholar 

  46. Zhang, S. S., Xu, K. & Jow, T. R. Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49, 1057–1061 (2004).

    Article  Google Scholar 

  47. Zhu, Y., Xu, Y., Liu, Y., Luo, C. & Wang, C. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5, 780–787 (2013).

    Article  Google Scholar 

  48. Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002).

    Article  Google Scholar 

  49. Seong, I. W., Hong, C. H., Kim, B. K. & Yoon, W. Y. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode. J. Power Sources 178, 769–773 (2008).

    Article  Google Scholar 

  50. Yoshimatsu, I., Hirai, T. & Yamaki, J. i. Lithium electrode morphology during cycling in lithium cells. J. Electrochem. Soc. 135, 2422–2427 (1988).

    Article  Google Scholar 

  51. Devaux, D. et al. Failure mode of lithium metal batteries with a block copolymer electrolyte analyzed by X-ray microtomography. J. Electrochem. Soc. 162, A1301–A1309 (2015).

    Article  Google Scholar 

  52. Aurbach, D., Zinigrad, E., Teller, H. & Dan, P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J. Electrochem. Soc. 147, 1274–1279 (2000).

    Article  Google Scholar 

  53. Slane, S. Measurement of Lithium Cycling Efficiency in Organic Electrolytes (Electronics Technology and Devices Laboratory, 1991).

    Book  Google Scholar 

  54. Roberts, M. et al. Increased cycling efficiency of lithium anodes in dimethyl sulfoxide electrolytes for use in Li–O2 batteries. ECS Electrochem. Lett. 3, A62–A65 (2014).

    Article  Google Scholar 

  55. Kang, S. J. et al. Improved cycle efficiency of lithium metal electrodes in Li–O2 batteries by a two-dimensionally ordered nanoporous separator. J. Mater. Chem. A 2, 9970–9974 (2014).

    Article  Google Scholar 

  56. Chiaramonti, A. N., Thompson, L. J., Egelhoff, W. F., Kabius, B. C. & Petford-Long, A. K. In situ TEM studies of local transport and structure in nanoscale multilayer films. Ultramicroscopy 108, 1529–1535 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The work was partially supported by the Vehicle Technology Office, US Department of Energy (DOE) (Grant No. 1F-32504/DE-AC02-06CH11357), and the National Science Foundation (NSF) (Grant No. 1511645). We would like to acknowledge the Integrated Nanosystems Development Institute (INDI) for the use of their JEOL7800F field-emission scanning electron microscope, which was awarded through NSF grant MRI-1229514. The authors would like to express their appreciation for C. Renguette’s help with English editing. The in situ TEM work was carried out in the Center for Nanoscale Materials at Argonne National Laboratory, an Office of Science user facility supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Other TEM work was carried out in part at the Center for Functional Nanomaterials at Brookhaven National Laboratory (US DOE contract DE-AC02-98CH10886). Finally, we also thank D. Tien, program director of the Battery Program, Vehicle Technology Office, US DOE, for his support.

Author information

Authors and Affiliations

Authors

Contributions

J.X. proposed the concept, designed the experiments, interpreted results, conceived the mechanism, and wrote the manuscript. Yadong L. and Q.L. designed some of the experiments and carried out all the electrochemical work and analysed the electrochemical data with the help of F.Y. L.X. performed all SEM work and L.X. and Yuzi L. carried out the in situ TEM work. E.A.S. helped on manuscript development. All of the authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Jian Xie.

Ethics declarations

Competing interests

A patent has been filed (patent application number 61/486,946) for controlling the Li dendrite growth via the FNC-coated separator method to make the Li electrode rechargeable.

Supplementary information

Supplementary Information

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Discussion, Supplementary References. (PDF 2016 kb)

Supplementary Video 1

Li-dendrite growth process examined using in situ TEM. A specially designed TEM cell consisting of a Li-metal working electrode, a Li2O solid electrolyte and an FNC layer coated on the surface of Li2O solid electrolyte, was employed to observe the Li dendrite growing process. (MP4 2166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, Q., Xin, L. et al. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat Energy 2, 17083 (2017). https://doi.org/10.1038/nenergy.2017.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nenergy.2017.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing